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Abstract

In light of the rapidly growing large-scale data in federated ecosystems, the
traditional principal component analysis (PCA) is often not applicable due to privacy
protection considerations and large computational burden. Algorithms were proposed
to lower the computational cost, but few can handle both high dimensionality and
massive sample size under distributed settings. In this paper, we propose the FAst
DIstributed (FADI) PCA method for federated data when both the dimension d and
the sample size n are ultra-large, by simultaneously performing parallel computing
along d and distributed computing along n. Specifically, we utilize L parallel copies
of p-dimensional fast sketches to divide the computing burden along d and aggregate
the results distributively along the split samples. We present a general framework
applicable to multiple statistical problems, and establish comprehensive theoretical
results under the general framework. We show that FADI accelerates the computation
while enjoying the same non-asymptotic error rate as the traditional PCA when Lp ≥ d.
We also derive inferential results that characterize the asymptotic distribution of FADI,
and show a phase-transition phenomenon as Lp increases. We perform extensive
simulations to empirically validate our theoretical findings, and apply FADI to the
1000 Genomes data to study the population structure.
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1 Introduction

Widely employed for dimension reduction, principal component analysis (PCA) finds

applications in various scientific fields, including network studies (Abbe et al., 2020),

statistical genetics (Reich et al., 2008) and finance (Pasini, 2017). Parameter estimation

in many statistical models is based on PCA, such as spectral clustering in graphical

models (Abbe, 2018), and clustering with subsequent k-means refinement in Gaussian

mixture models (Chen et al., 2021). When it comes to real data analysis, however, several

shortcomings of the traditional PCA hinder its application to large-scale datasets. First, the

high dimensionality and large sample size of modern big data can make the computation of

PCA infeasible. For instance, PCA is frequently employed to address ancestry confounding

in Genome-Wide Association Studies (GWAS) (Price et al., 2006), yet large biobanks, such

as the UK Biobank (Sudlow et al., 2015), often contain hundreds of thousands to millions

of Single Nucleotide Polymorphisms (SNPs) and subjects, necessitating more scalable

algorithms for efficient computation. Second, large-scale datasets in many applications

are stored in federated ecosystems, where data cannot leave individual warehouses due to

privacy protection considerations (Belbin et al., 2021; Dey et al., 2022; Pulley et al., 2010).

This calls for federated learning methods (Jordan et al., 2019; Li et al., 2020) that provide

efficient and privacy-protected strategies for joint analysis across data warehouses without

the need to exchange individual-level data. In view of those limitations, efforts have been

made in recent years on developing fast PCA and distributed PCA algorithms.

Specifically, the existing fast PCA algorithms use the full-sample data and apply random

projection to speed up calculation. For instance, Halko et al. (2011) proposed to estimate the

K leading eigenvectors of a d× d matrix (K ≪ d) using Gaussian random sketches, which

decreases the computation time by a factor of O(d) at the cost of increasing the statistical

2



error by a factorial power of d. Halko et al. (2011) tried to enhance estimation accuracy

by employing “subspace iteration” via taking power of the original matrix. However, this

method is not practically applicable to federated data as it necessitates numerous rounds of

data communications. Chen et al. (2016) modified Halko et al. (2011)’s method by repeating

fast sketching and showed the algorithm is consistent when the number of i.i.d. sketches

goes to infinity. However, they did not discuss the finite sample statistical rates, and their

results are limited to deterministic matrices without accounting for data randomness. As all

of these methods use the full data, they have two major limitations. First, though allowing

for large d, the existing fast PCA methods are not scalable to large sample sizes n. Second,

they are not applicable to federated data when data in different sites cannot be shared.

The existing distributed PCA algorithms reduce the computation burden by partitioning

the full data “horizontally” or “vertically”. The horizontal partition splits the data over the

sample size n, whereas the vertical partition splits the data over the dimension d. Fan et al.

(2019) considered the horizontally distributed PCA where they estimated the K leading

eigenvectors of the d × d population covariance matrix by applying traditional PCA to

each data split and aggregating the results across sites. They showed when the number of

splits is not too large, the error rate is of the same order as the traditional PCA. Since

traditional PCA is used for each partition, the computational complexity is at least of order

O(d3), which will be computationally difficult for large d. Kargupta et al. (2001) considered

vertical partition and developed a method that collects local principal components (PCs)

and then reconstructs global PCs by linear transformations. However, there is no theoretical

guarantee on the error rate, and the method may fail for correlated variables.

Apart from the above applications in parameter estimation, inference also constitutes an

important part of PCA. For example, when studying the ancestry groups of whole genome
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data under the mixed membership models, while the estimation error rate guarantees

the overall misclustering rate for all subjects, one may be interested in testing whether

two individuals of interest share the same ancestry membership profile and assessing the

associated uncertainty (Fan et al., 2022). Furthermore, despite the rich literature depicting

the asymptotic distribution of traditional PCA estimators under different statistical models

(Anderson, 1963; Johnstone, 2001; Baik et al., 2005; Paul, 2007; Wang and Fan, 2017;

Chen et al., 2019; Yan et al., 2021; Fan et al., 2022), distributional characterization of fast

PCA methods and distributed PCA methods are not well-studied. For instance, Halko

et al. (2011) and Fan et al. (2019) provided error bound for the fast PCA and distributed

PCA algorithms, but with no characterization of the asymptotic distribution and hence

no evaluation of the testing efficiency. Yang et al. (2021) analyzed the convergence in

probability for various sketching methods involving random projections, yet they did not

provide inferential analysis on the estimator. In independent work by Zhang and Tang

(2022), the error bounds and asymptotic distribution of the “subspace iteration” sketching

estimator were derived. However, their method is not efficiently applicable to federated

data, and their model assumptions primarily focus on error matrices with independent

entries, which may not hold for correlated entry-wise errors.

In view of the gaps in the existing literature, we propose in this paper a scalable and

computationally efficient FAst DIstributed (FADI) PCA method applicable to federated

data that could be large in both d and n. Specifically, to obtain the K-leading PCs of a

d × d matrix M from the observed data distributed across m sites, we apply L parallel

copies of p-dimensional fast sketching to each local split, which serves to distribute the

computing burden along d across L parallel machines. The parallel fast sketching results are

subsequently aggregated across the data splits to leverage the information from the complete
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data. Finally, we aggregate the PC results across parallel fast sketches to restore statistical

accuracy. These two levels of aggregations offer distinct advantages: the first aggregation

across data partitions ensures the robustness of our method regardless of the number of

machines m, while the second aggregation across parallel sketches reduces statistical errors.

We will show that FADI has computational complexities of smaller magnitudes than the

existing methods (see Table 2), while achieving the same asymptotic efficiency as the tradi-

tional PCA. Moreover, we establish FADI under a general framework that covers multiple

statistical models, including the spiked covariance model, the Gaussian mixture models

(GMM), the degree-corrected mixed membership (DCMM) model, and the incomplete

matrix inference model. For the clarity of presentation, we focus on the spiked covariance

model and the GMM in the main text as illustrative applications and will discuss the

other two in Supplementary Materials A. We consider the horizontally distributed setting

for the spiked covariance model, and the vertically distributed setting for GMM. Further

elaboration on each model can be found in Section 2.

We summarize the major contributions of our paper as follows. First, the existing

fast PCA or distributed PCA methods either handle high dimensions d or large sample

sizes n, but not both. FADI allows both n and d to be large. It improves over fast

PCA (Halko et al., 2011) by achieving scalability for large n through data splitting and

accommodating federated data. It improves over distributed PCA (Fan et al., 2019) by

allowing for large d using multiple fast sketches. Due to the fact that variables are usually

dependent, it is challenging to achieve parallel computing along d and distributed computing

along n simultaneously. To address this challenge, FADI splits the data along n and

untangles the variable dependency along d by dividing the high-dimensional data into

L copies of p-dimensional fast sketches. We establish theoretical error bounds to show
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that FADI is as accurate as the traditional PCA so long as Lp ≳ d. Second, we provide

distributional guarantees on the FADI estimator to facilitate inference, which is absent in

previous literature on fast or distributed PCA methods. Specifically, we depict the trade-off

between computational complexity and testing efficiency by studying FADI’s asymptotic

distribution under the regimes Lp≪ d and Lp≫ d respectively, and show a phase-transition

phenomenon. Third, we propose FADI under a general framework applicable to multiple

statistical models. We provide a comprehensive investigation of FADI’s performance both

methodologically and theoretically under the general framework, and illustrate the results

with specific statistical models. In comparison, the existing distributed methods mainly

focus on estimating the covariance structure of independent samples (Fan et al., 2019).

The rest of the paper is organized as follows. Section 2 introduces the concrete problem

setups. Section 3 discusses FADI’s implementation details, as well as its complexity and

modifications whenK is unknown. Section 4 presents the theoretical results on the statistical

rates and asymptotic normality. Section 5 shows the empirical evaluation of FADI’s finite

sample performance and comparisons with several existing methods. The application of

FADI to the 1000 Genomes Data is given in Section 6, followed by discussions in Section 7.

2 Eigenspace Estimation for Low-Rank Matrix

We first introduce some useful notations. For a vector v, we denote by ∥v∥2 the ℓ2-norm, and

∥v∥∞ the ℓ∞-norm. For a matrix A = [Aij ] ∈ Rm×n, denote by A = UΛV⊤ =
∑K

j=1 σjujv
⊤
j

its singular value decomposition (SVD). We use σj(A) (respectively λj(A)) to represent the j-

th largest singular value (respectively eigenvalue) of A, and σmax(A) or σmin(A) (respectively

λmax(A) or λmin(A)) stands for the largest or smallest singular value (respectively eigenvalue)

of A. Denote by sgn(A) =
∑

σj>0 ujv
⊤
j the matrix signum, by ∥A∥2 the matrix spectral
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norm, ∥A∥F the Frobenius norm, and ∥A∥2,∞ = sup∥x∥2=1 ∥Ax∥∞ = maxi ∥A⊤ei∥2 the

2-to-∞ norm, where {ei}mi=1 ⊆ Rm is the canonical basis. For two orthonormal matrices

V,U ∈ Rn1×n2 with n1 > n2, we define the metric D(U,V) = ∥UU⊤ −VV⊤∥F. For an

integer n, define [n] = {1, 2, . . . , n}. We use c and C to represent generic constants.

In this paper, we aim to estimate the eigenspace of the rank-K symmetric matrix

M ∈ Rd×d, whose eigen-decomposition is M = VΛV⊤, where Λ = diag(λ1, . . . , λK),

|λ1| ≥ |λ2| ≥ . . . ≥ |λK | > 0 and V is the stacked K leading eigenvectors. Note that when

M is asymmetric, we can deploy the “symmetric dilation” trick (Chen et al., 2021) to fit it

into the setting. Denote by ∆ = |λK | the eigengap, and assume without loss of generality

that λ1 > 0. M̂ is a corrupted version of M obtained from observed data, with E = M̂−M

being the error matrix. Our goal is to estimate the column space of V from M̂ distributively

and scalably. The following two examples provide concrete statistical setups.

Example 1 (Spiked Covariance Model (Johnstone, 2001)). Let X1, . . . ,Xn ∈ Rd be i.i.d.

sub-Gaussian random vectors with E(Xi) = 0 and E(XiX
⊤
i ) = Σ. We assume {Xi}ni=1

are i.i.d. for the simplicity of presentation and will generalize the theoretical results to

non-i.i.d. data in Section 4.1. We assume the following decomposition for the covariance

matrix: Σ = VΛV⊤ + σ2Id, where V ∈ Rd×K is the stacked K leading eigenvectors and

Λ = diag(λ1, . . . , λK) with λ1 ≥ . . . ≥ λK > 0. Assume that the data are split along the

sample size n and stored on m different sites. Denote by {X(s)
i }ns

i=1 the sample split of size

ns on the s-th site, and by X(s) = (X
(s)
1 , . . . ,X

(s)
ns )

⊤ the corresponding data matrix split

(s = 1, . . . ,m and
∑m

s=1 ns = n). Denote by X = (X1, . . . ,Xn)
⊤ the full n× d data matrix.

Then M = VΛV⊤, and M̂ = Σ̂− σ̂2Id, where Σ̂ = 1
n

∑n
i=1 XiX

⊤
i is the sample covariance

matrix and σ̂2 is a consistent estimator for σ2.

Example 2 (Gaussian Mixture Models (GMM) (Chen et al., 2021)). Let W1, . . . ,Wd ∈ Rn
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be independent samples with Wj (j ∈ [d]) generated from one of K Gaussian distributions

with means θk ∈ Rn (k ∈ [K]). Specifically, for j ∈ [d], Wj is associated with a membership

label kj ∈ [K], and Wj ∼ N (
∑K

k=1 θkI{kj = k}, In). Our goal is to recover the unknown

membership labels kj’s. Denote X = (W1, . . . ,Wd) = (X1, . . . ,Xn)
⊤, where Xi is the i-th

row of X. Without loss of generality, we order Wj’s such that E(X) = ΘF⊤,

where Θ = (θ1, . . . ,θK) ∈ Rn×K , F = diag(1d1 , . . . ,1dK ) ∈ Rd×K ,

with dk denoting the number of samples with mean θk and 1dk ∈ Rdk denoting vector with

all entries equal to 1. Then we define M = E[X⊤X]−nId = FΘ⊤ΘF⊤ and M̂ = X⊤X−nId.

Recall M = VΛV⊤. Since V and F share the same column space, we can recover the

memberships from V. We consider the regime where n > d, and assume there exists a

constant C > 0 such that maxk dk ≤ Cmink dk and σ1(Θ) ≤ CσK(Θ). We consider the

vertically distributed setting where the data are split along the dimension n on m sites.

Denote by X(s) = (X
(s)
1 , . . . ,X

(s)
ns )

⊤ the data split on the s-th site of size ns (s ∈ [m]).

We primarily illustrate with the above two examples for readability and will provide

additional applications to the degree-corrected mixed membership (DCMM) model and the

incomplete matrix inference model in Supplementary Materials A.

3 Fast Distributed Principal Component Analysis

In this section, we present the FADI algorithm and its application to different examples.

We then provide the computational complexities of FADI and compare it with the existing

methods. We also discuss how to estimate the rank K when it is unknown.

3.1 Overview and Intuition

For a given matrix M̂ ∈ Rd×d, the computational cost of the traditional PCA on M̂ is O(d3).

In the case where M̂ is computed from observed data, e.g., the sample covariance matrix
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Σ̂ = 1
n

∑n
i=1 XiX

⊤
i , extra computational burden comes from calculating M̂, e.g., O(nd2)

flops for computing the sample covariance matrix. Hence performing traditional PCA for

large-scale data with high dimensions and huge sample sizes can be considerably expensive.

To reduce the computational cost when d is large, the most straightforward idea is

to reduce the data dimension. One popular method for dimension reduction is random

sketching (Halko et al., 2011). For instance, for a low-rank matrix M of rank K, its column

space can be represented by a low-dimensional fast sketch MΩ ∈ Rd×p, where Ω ∈ Rd×p

is a random Gaussian matrix with K < p ≪ d. In practice, M is usually replaced by an

almost low-rank corrupted matrix M̂ calculated from observed data. Traditional fast PCA

methods then consider performing random sketching on M̂ instead, and use the full sample

to obtain the fast sketch Ŷ = M̂Ω ≈ VΛV⊤Ω that almost maintains the same left singular

space as M = VΛV⊤. It is hence reasonable to estimate V by performing SVD on the

d× p matrix Ŷ that has a much smaller computational cost than directly performing PCA

on M̂. However, one major drawback of this approach is that information might be lost due

to fast sketching. Furthermore, the method is not scalable when n is large or the data are

federated. This motivates us to propose FADI, where we repeat the fast sketching multiple

times on each local split and aggregate the results to reduce the statistical error.

Specifically, assume the data are stored across m sites, and we have the decomposition

M̂ =
∑m

s=1 M̂
(s), where M̂(s) is the component that can be computed locally on the s-th

site (s ∈ [m]). Then instead of applying random sketching directly to M̂, FADI computes

in parallel the local fast sketching for each component M̂(s) and aggregates the results

across m sites, which will reduce the cost of computing M̂Ω by a factor of 1/m. Note

that this representation of M̂ is legitimate in many models. Taking Example 1 for instance,

define M̂(s) = 1
n
(X(s)⊤X(s))− (σ̂2/m)Id, and we have M̂ = Σ̂− σ̂2Id =

∑m
s=1 M̂

(s). We will

9



further elaborate on the decomposition in Section 3.3.

3.2 General Algorithmic Framework

Figure 1 illustrates the fast distributed PCA (FADI) algorithm:

Figure 1: Illustration of FADI. Here {X(s)}ms=1 are the raw data stored distributively on m sites,

and M̂(s) is the s-th component of M̂ that can be calculated from X(s). Ŷ(ℓ) =
∑

s∈[m] Ŷ
(s,ℓ)

(ℓ ∈ [L]) is the ℓ-th copy of the fast sketch obtained by aggregating the fast sketches calculated
distributively for each data split.

In Step 0, we perform preliminary processing on the raw data to produce {M̂(s)}ms=1.

We will elaborate on the case-specific preprocessing in Section 3.3.

In Step 1, we calculate the distributed fast sketch Ŷ = M̂Ω =
∑m

s=1 M̂
(s)Ω, where Ω

is a d× p standard Gaussian test matrix and K < p≪ d. To reduce the statistical error,

we repeat the fast sketching L times and aggregate the results from the L copies of Ŷ.

Specifically, we generate L i.i.d. Gaussian test matrices {Ω(ℓ)}Lℓ=1, and for each ℓ ∈ [L], we

apply Ω(ℓ) distributively to M̂(s) for each s ∈ [m] and obtain the ℓ-th fast sketch of M̂(s) as

Ŷ(s,ℓ) = M̂(s)Ω(ℓ). We send Ŷ(s,ℓ) (s = 1, · · · ,m) to the ℓ-th parallel server for aggregation.

In Step 2, on the ℓ-th server, the random sketches Ŷ(s,ℓ) (s = 1, · · · ,m) from the m split

datasets corresponding to the ℓ-th test matrix Ω(ℓ) will be collected and added up to get the

ℓ-th fast sketch: Ŷ(ℓ) =
∑m

s=1 Ŷ
(s,ℓ) (ℓ ∈ [L]). We next compute in parallel the top K left
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singular vectors V̂(ℓ) of Ŷ(ℓ) and send the V̂(ℓ)’s to the central processor for aggregation.

In Step 3, on the central processor, calculate Σ̃ = 1
L

∑L
ℓ=1 V̂

(ℓ)V̂(ℓ)⊤ = 1
L

∑L
ℓ=1Pℓ,

where Pℓ = V̂(ℓ)V̂(ℓ)⊤ is the projection matrix of V̂(ℓ). We next calculate the K leading

eigenvectors Ṽ of Σ̃, which will serve as the final estimator of V.

To further improve the computational efficiency, we might conduct another fast sketching

in Step 3 to compute Ṽ. More specifically, we apply the power method (Halko et al., 2011)

to Σ̃ by calculating Ỹ = Σ̃qΩF =
(

1
L

∑L
ℓ=1 V̂

(ℓ)V̂(ℓ)⊤
)q

ΩF for q ≥ 1, where ΩF ∈ Rd×p′ is a

Gaussian test matrix with dimension p′ that can be set different from p for optimal efficiency.

Here, Ỹ is calculated iteratively: Ỹ(i) =
1
L

∑L
ℓ=1

(
V̂(ℓ)V̂(ℓ)⊤Ỹ(i−1)

)
for i = 1, . . . , q, where

Ỹ(0) = ΩF and Ỹ = Ỹ(q). We denote by ṼF the leading K left singular vectors of Ỹ. We

will show in Section 4 when q is properly large, the distance between Ṽ and ṼF is negligible.

Remark 1. We refer to Theorem 4.1 for the choice of p and L. In general, taking p = 2K is

sufficient. For now, we assume K is known, and the scenarios where K is unknown will be

discussed in Section 3.5.

3.3 Case-Specific Processing of Raw Data

In this section, we discuss the calculation of M̂ in Step 0 specifically for each example.

Example 1: Recall that in Step 0 of FADI, to obtain M̂, we need a consistent estimator

of the residual variance σ2. Denote by S = {i1, i2, . . . , iK′} ⊆ [d] an arbitrary index set

of size K ′ ≥ K + 1. Then we estimate σ2 by σ̂2 = λmin(Σ̂S), where Σ̂S is a K ′ × K ′

principal submatrix of Σ̂ computed using only data columns in the set S, and can be

easily computed distributively (see Figure 9 in the supplement for reference). Then for

s ∈ [m], we have M̂(s) = 1
n
(X(s)⊤X(s)) − (σ̂2/m)Id. Note that since computing M̂(s)Ω =

1
n
X(s)⊤(X(s)Ω)−m−1σ̂2Ω is much faster than first computing M̂(s) then computing M̂(s)Ω,

we will calculate M̂(s)Ω by calculating X(s)Ω first rather than directly computing M̂(s).
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Example 2: Recall that the data {Wj}dj=1 ⊆ Rn are vertically distributed across m

sites, and {X(s)}ms=1 are the corresponding data splits. For the s-th site, we have M̂(s) =

X(s)⊤X(s) − (n/m)Id, and for ℓ ∈ [L], we compute Ŷ(s,ℓ) by X(s)⊤(X(s)Ω(ℓ))− (n/m)Ω(ℓ).

3.4 Computational Complexity

In this section, we provide the communicational and computational complexities of FADI

for each example given in Section 2. The complexity of each step is listed in Table 1.

Communication Computation
Example 1 Example 2 Example 1 Example 2

Step 0 O(mK2) N/A Σ̂S : O(K
2n
m +K2m)

σ̂2 : O(K3)
O(1)

Step 1 O(mpd) O(mpd) Ŷ(s,ℓ) : O(dnpm ) Ŷ(s,ℓ) : O(dnpm )

Step 2 O(LKd) O(LKd)
Ŷ(ℓ) : O(mdp)

V̂(ℓ) : O(dp2)

Ŷ(ℓ) : O(mdp)

V̂(ℓ) : O(dp2)

Step 3 N/A N/A
Ṽ : O(d2pL+ d3) Ṽ : O(d2pL+ d3)

ṼF : O(dKp′Lq + dp′2)

Total O(mpd+ LKd) O(mpd+ LKd) O(dnpm + dKp′Lq) O(dnpm + dKp′Lq)

Table 1: Complexity for Examples 1 and 2. For the simplicity of presentation, we assume
maxs∈[m] ns ≍ n/m. In Step 3, we recommend computing ṼF instead of Ṽ in practice. The total

complexity in the last line refers to the total computational cost for ṼF.

When m can be customized, we recommend taking m ≍ n/d for optimal efficiency.

When p ≍ (K ∨ log d), L ≍ d/p, p′ ≍ K and q ≍ log d, the total computational cost will be

O
(
dn(K∨ log d)/m+d2K log d

)
. Inference on eigenspace requires computing the asymptotic

covariance, whose formula and computational costs will be discussed in Sections 4.3 and 4.4.

For a comparison of FADI with the existing works, we provide in Table 2 the theoretical

error rates and the computational complexities of FADI against different PCA methods

under Example 1 (please refer to Therem 4.1 for the error rates of FADI). We choose

Example 1 for illustration, as the existing distributed PCA methods mainly consider this

setting (Fan et al., 2019). The results show that under the distributed setting, FADI has a
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Method Error Rate Computational Complexity

FADI O(
√
Kr/n) O (dn(K ∨ log d)/m+ d2K log d)

Traditional PCA O(
√
Kr/n) O(d2n+ d3)

Fast PCA O(
√
Kdr/n) O(dnK + d2K)

Distributed PCA O(
√
Kr/n) O(d2n/m+ d3)

Table 2: Error rates and computational complexities for FADI, traditional PCA, fast PCA (one
sketching) (Halko et al., 2011) and distributed PCA (Fan et al., 2019) for Example 1, where the

error rate is evaluated by
(
E|D( · ,V)|2

)1/2
. Here r = tr(Σ)/∥Σ∥2 refers to the effective rank of

the covariance matrix and m is the number of sites. For FADI, we take p ≍ (K ∨ log d), L ≍ d/p,
p′ ≍ K and q ≍ log d.

much lower computational complexity than the other three methods, while enjoying the

same error rate as the traditional full-sample PCA. In comparison, the distributed PCA

in (Fan et al., 2019) is slowed down by applying traditional PCA to each data split. The

fast PCA algorithm in (Halko et al., 2011) has suboptimal computational complexity and

theoretical error rate due to their downstream projection that hinders aggregation.

3.5 Estimation of the Rank K

FADI requires inputting the rank K of M. In practice, if we are only interested in estimating

the leading PCs, the exact value of K is not needed as long as the fast sketching dimensions,

p and p′, are sufficiently larger than K. Yet knowing the exact value of K will improve the

computational efficiency as well as facilitate inference on PCs. In fact, the estimation of K

can be incorporated into Step 2 and Step 3 of FADI. Specifically, for the ℓ-th parallel server

( ℓ ∈ [L]), after performing the SVD Ŷ(ℓ) = V̂
(ℓ)
p Λ̂

(ℓ)
p Û

(ℓ)⊤
p , we estimate K by

K̂(ℓ) = min{k < p : σk+1(Ŷ
(ℓ))− σp(Ŷ

(ℓ)) ≤ √
pµ0},

where µ0 > 0 is a user-specified parameter (we refer to Theorem 4.3 for the choice of µ0).

Then send all the left singular vectors V̂
(ℓ)
p and K̂(ℓ), ℓ ∈ [L] to the central processor. Finally,

on the central processor, take K̂ = ⌈median
{
K̂(1), K̂(2), . . . , K̂(L)

}
⌉ as the estimator for K,

and obtain ṼK̂ (respectively ṼF
K̂
) by performing PCA (respectively powered fast sketching)

on the aggregated average of {V̂(ℓ)

K̂
}ℓ∈[L] and taking the K̂ leading PCs, where V̂

(ℓ)

K̂
is the K̂
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leading PCs of Ŷ(ℓ). We will show in Theorem 4.3 that K̂ is a consistent estimator of K.

4 Theoretical Guarantees on the FADI Estimator

In this section, we present the theoretical error bound and the asymptotic distribution of

the FADI estimator.

4.1 Theoretical Bound on Error Rates

We need the following condition to guarantee that the error term converges at a proper rate.

Assumption 1 (Convergence of ∥E∥2). Recall that E = M̂−M is the error matrix. Assume

that ∥E∥2 is sub-exponential, and there exists a rate r1(d) such that

∥∥E∥2∥ψ1 = sup
q≥1

q−1 (E∥E∥q2)
1/q ≲ r1(d).

Remark 2. By standard probability theory, we know that there exists a constant ce > 0

such that for any t > 0 we have P(∥E∥2 ≥ t) ≤ exp (−cet/r1(d)) and ∥E∥2 = OP (r1(d)).

We will conduct a variance-bias decomposition on the error rate D(Ṽ,V). To facilitate

the discussion, we introduce the intermediate matrix Σ′ = EΩ

(
V̂(ℓ)V̂(ℓ)⊤), where the

expectation is taken with respect to Ω. Let V′ be the top K eigenvectors of Σ′. Note that

both Σ′ and V′ are random depending on M̂. For the FADI PC estimator Ṽ, we have the

following “variance-bias” decomposition of the error rate:

D(Ṽ,V) ≤ D(Ṽ,V′)︸ ︷︷ ︸
variance

+D(V′,V)︸ ︷︷ ︸
bias

.

Conditional on all the available data, the first term characterizes the statistical randomness

of Ṽ due to fast sketching, whereas the second bias term is deterministic and depends on all

the information provided by the data. Intuitively, since Σ̃ = 1
L

∑L
ℓ=1 V̂

(ℓ)V̂(ℓ)⊤ converges to

the conditional expectation Σ′, Ṽ will also converge to V′. Hence the first variance term goes

to 0 asymptotically. As for the second bias term, let V̂ be the K leading eigenvectors of M̂,

then we further break the bias term into two components: D(V′,V) ≤ D(V̂,V)+D(V′, V̂).

14



We can see that the first term is the error rate for the traditional PCA, whereas the second

term is the bias caused by fast sketching. We can show that the second term is 0 with high

probability and is hence negligible compared to the first term, and the bias of the FADI

estimator is of the same order as the error rate of the traditional PCA. In other words, the

bias of the FADI estimator mainly comes from V̂, which is due to the information we can

get from the available data. The following theorem gives the overall error rate of the FADI

PC estimator. Its proof is given in Supplementary Materials D.2.

Theorem 4.1. Under Assumption 1, if p ≥ max(2K,K + 7) and (log d)−1
√
p/d∆/r1(d)

≥ C for some large enough constant C > 0, we have

(
E|D(Ṽ,V)|2

)1/2
≲

√
K

∆
r1(d) +

√
Kd

∆2pL
r1(d). (1)

Furthermore, under the conditions that p ≥ max(2K,K+8q−1) and (log d)−1
√
p/d∆/r1(d) ≥

C, there exists some constant η > 0 such that

(
E|D(ṼF,V)|2

)1/2
≲

√
K

∆
r1(d)+

√
Kd

∆2pL
r1(d)+

√
Kd

p′

(
ηq2

√
d

∆2p
r1(d)

)q

. (2)

On the RHS of (1), the first term is the bias term, while the second term is the

variance term. When Lp ≍ d, the variance term will be of the same order as the bias

term, which is the error rate of the traditional PCA. As for (2), the first term and

the second term on the RHS are the same as the bias and the variance terms in (1),

while the third term comes from the additional fast sketching. If we properly choose

q = ⌈
(
log
(√

p/d∆/r1(d)
))−1

log d⌉ + 1 ≤ log d, the third term in (2) will be negligible.

Based upon Theorem 4.1, we provide the case-specific error rate for each example given in

Section 2 in the following corollary. The proof is deferred to Supplementary Materials D.3.

Corollary 4.2. For Examples 1 and 2, we have the following error bounds for each case

under corresponding regularity conditions.
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• Example 1: Define κ1 = (λ1 + σ2)/∆ and recall r = tr(Σ)/∥Σ∥2, then under the

conditions that p′ ≥ max(2K,K + 7), p ≥ max(2K,K + 8 log d− 1), q = ⌈log d⌉ and

n ≥ C(rd/p)κ21 log
4 d for some large enough constant C > 0, it holds that

(
E|D(ṼF,V)|2

)1/2
≲ κ1

√
Kr

n
+ κ1

√
Kdr

npL
. (3)

• Example 2: Under the conditions that ∆2
0 ≥ CK(log d)2max

(
d(log d)2/p,

√
n/p
)
for

some large enough constant C > 0, where ∆0 = ∥Θ∥2, if we take p′ ≥ max(2K,K+7),

p ≥ max(2K,K + 8 log d− 1) and q = ⌈log d⌉, it holds that

(
E|D(ṼF,V)|2

)1/2
≲

(
K

∆0

+
K

∆2
0

√
Kn

d

)
+

√
d

pL

(
K

∆0

+
K

∆2
0

√
Kn

d

)
. (4)

Remark 3. We can generalize the results of Example 1 to the heterogeneous residual

variance model for non-i.i.d. data, under which {Xi}ni=1 ⊆ Rd are centered random vectors

such that limn→∞
1
n

∑n
i=1 E(XiX

⊤
i ) = Σ = D + VΛV⊤, where D = diag(σ2

1, . . . , σ
2
d)

and λ1∥V∥22,∞/∆ = o(1). Then we have M̂ = Σ̂ − diag(Σ̂), where Σ̂ = 1
n

∑n
i=1 XiX

⊤
i ,

M = VΛV⊤ and ∥E∥2 ≤ 2∥Σ̂−Σ∥2 + ∥ diag(VΛV⊤)∥2 ≤ 2∥Σ̂−Σ∥2 + λ1∥V∥22,∞. Then

by plugging in r1(d) = λ1∥V∥22,∞ + ∥∥Σ̂ − Σ∥2∥ψ1 , we have the error bound under the

heterogeneous scenario. While the first term is deterministic, the second term depends on

the dependence structure of the sample. Many studies depicted the convergence of the

sample covariance matrix for non-i.i.d. data (Banna et al., 2016; Fan et al., 2013).

In Example 1, when Lp ≳ d, our error rate in (3) achieves optimality (Fan et al., 2019).

In the distributed data setting, we impose the condition n/r ≳ d/p, while Fan et al. (2019)’s

distributed PCA requires n/r > m. In our approach, the additional factor d/p can be

interpreted as the number of “vertical splits” along the dimension d, playing a similar role

as the extra factor m (the number of splits along n) in Fan et al. (2019)’s method. Both

Fan et al. (2019)’s and our scaling conditions involve an extra factor in exchange for reduced
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computational costs under the distributed setting. As for Example 2, our estimation rate

in (4) is the same as in (Chen et al., 2021). When the rank K is unknown and estimated

by FADI, the following theorem shows that under appropriate conditions, our estimator K̂

presented in Section 3.5 recovers the true K with high probability.

Theorem 4.3. Under Assumption 1, define η0 = 480c−1
e

√
d/(∆2p)r1(d) log d, where

ce > 0 is the constant defined in Remark 2. When d ≥ 2, 2K ≤ p ≪ d(log d)−2 and

η0 ≤ (32 log d)−2/(p−K+1), if we choose µ0 such that ∆η0/24 ≤ µ0 ≤ ∆
√
η0/12, then with

probability at least 1−O(d−(L∧20)/2), K̂ = K.

We defer the proof to Supplementary Materials D.4. We provide case-specific choices of

the thresholding parameter µ0 in the following corollary.

Corollary 4.4. We specify the choice of µ0 for Examples 1 and 2,

• Example 1: Under the conditions that 2K ≤ p ≪ (log d)−2d, n ≫ κ21rd/p(log d)
4,

(λ1 + σ2) ≪
(√

np/(d log d)
)1/4

and ∆ ≫
(
σ−2(np)−1/2d log d

)1/3
, if we take µ0 =(

d(np)−1/2 log d
)3/4

/12, with probability at least 1−O
(
d−(L∧20)/2), we have K̂ = K.

• Example 2: Under the conditions that 2K ≤ p≪ (log d)−2d and K(log d)3
√
n/p≪

∆2
0 ≪ nK/d(log d)2, if we take µ0 = d(log d)2

√
n/p/12, with probability at least

1−O
(
d−(L∧20)/2), we have K̂ = K.

Remark 4. The proof is in Supplementary Materials D.5. For Example 2, we impose the

upper bound on ∆0 because in practice the eigengap ∆ is unknown, and estimation of ∆

requires knowledge of K. Imposing the upper bound on ∆0 makes the term in µ0 involving

knowledge of ∆ vanish and enables the estimation of K from observed data.
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4.2 Inferential Analysis: Intuition and Assumptions

In Section 4.1, we discuss the theoretical error bounds and present the bias-variance

decomposition for the FADI estimator ṼF. From (2), we can see that when Lp ≫ d, the

bias term will be the leading term, and the dominating error comes from D(V̂,V), whereas

when Lp ≪ d, the variance term will be the leading term and the main error derives

from D(ṼF, V̂). This offers insight into conducting inference on the estimator and implies

a possible phase transition in the asymptotic distribution. Before moving on to further

discussions, we state the following assumption to ensure that the bias of M̂ is negligible.

Assumption 2 (Statistical Rate for the Biased Error Term). For the error matrix E we have

the decomposition E = E0 +Eb, where E(E0) = 0 and Eb is the biased error term satisfying

limd→∞ P
(
∥Eb∥2≤r2(d)

)
= 1 with r2(d) = o

(
r1(d)

)
.

In fact, we will later show in Section 4.3 and Section 4.4 that the leading term for the

distance between ṼF and V takes on two different forms under the two regimes:

ṼFH−V ≈ P⊥E0VΛ−1 , if Lp≫ d;

ṼFH−V ≈ P⊥E0ΩBΩL
−1 , if Lp≪ d,

whereH is some orthogonal aligning matrix, P⊥ = I−PV = I−VV⊤, Ω = 1√
p
(Ω(1), . . . ,Ω(L)) ∈

Rd×Lp and BΩ = (B(1)⊤, . . . ,B(L)⊤)⊤ with B(ℓ) = (ΛV⊤Ω(ℓ)/
√
p)† ∈ Rp×K for ℓ = 1, . . . , L.

Here (·)† stands for the Moore-Penrose pseudo inverse. To get an intuitive understand-

ing on the form of the leading error term, let’s start with the regime Lp ≫ d where

D(ṼF,V) ≈ D(V̂,V) and consider the case where {|λk|}Kk=1 are well-separated such that

H ≈ IK . Following basic algebra, we have

ṼF −V ≈ V̂ −V ≈ P⊥(V̂ −V) = P⊥(M̂V̂Λ̂−1 −MVΛ−1)

≈ P⊥(M̂−M)VΛ−1 = P⊥E0VΛ−1,

where Λ̂ is theK-leading eigenvalues of M̂ corresponding to V̂, and the second approximation
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is due to the fact that V̂ and V are fairly close and PV(V̂ −V) will be negligible.

Now we turn to the scenario Lp≪ d, where the error mainly comes from ṼF − V̂. For

a given ℓ ∈ [L], denote Y(ℓ) = MΩ(ℓ) = VΛΩ̃(ℓ), where Ω̃(ℓ) = V⊤Ω(ℓ) is also a Gaussian

test matrix. Intuitively, p−1Ω̃(ℓ)Ω̃(ℓ)⊤ ≈ IK when p is much larger than K. Hence Ω̃(ℓ)

acts like an orthonormal matrix scaled by
√
p, and the rank-K truncated SVD for Ŷ(ℓ)/

√
p

and Y(ℓ)/
√
p will approximately be V̂(ℓ)Λ̂(Ω̃(ℓ)/

√
p) and VΛ(Ω̃(ℓ)/

√
p) respectively. Then

following similar arguments as when Lp≫ d, we have

V̂(ℓ) −V ≈ P⊥

(
(Ŷ(ℓ)/

√
p)(Ω̃(ℓ)/

√
p)⊤Λ̂−1 − (Y(ℓ)/

√
p)(Ω̃(ℓ)/

√
p)⊤Λ−1

)
≈ P⊥

(
Ŷ(ℓ)/

√
p−Y(ℓ)/

√
p
)
(Ω̃(ℓ)/

√
p)⊤Λ−1 ≈ P⊥E0(Ω

(ℓ)/
√
p)B(ℓ),

where the last approximation is because when Ω̃(ℓ)/
√
p is almost orthonormal we have

B(ℓ) = (ΛΩ̃(ℓ)/
√
p)† ≈ (Ω̃(ℓ)/

√
p)⊤Λ−1. Then aggregating the results over ℓ ∈ [L] we have

ṼF −V ≈ 1

L

L∑
ℓ=1

{
V̂(ℓ) −V

}
≈ 1

L

L∑
ℓ=1

P⊥E0(Ω
(ℓ)/

√
p)B(ℓ) = P⊥E0ΩBΩL

−1.

It is worth noting that

1

L
ΩBΩ ≈ 1

L

(
L∑
ℓ=1

(Ω/
√
p)(Ω/

√
p)⊤

)
VΛ−1 → VΛ−1, (5)

when Lp ≫ d, which demonstrates the consistency of the leading term across different

regimes of Lp. To unify the notations, we denote the leading term for ṼFH−V by

V(E0) =

{
P⊥E0VΛ−1 , if Lp≫ d;
P⊥E0ΩBΩL

−1 , if Lp≪ d.

Before we formally present the theorems, we introduce the following extra regularity

conditions necessary for studying the asymptotic features of the eigenspace estimator.

Assumption 3 (Incoherence Condition). For the eigenspace of the true matrix M, we assume

∥V∥2,∞ ≤
√
µK/d, where µ ≥ 1 may change with d.
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Assumption 4 (Statistical Rates for Eigenspace Convergence). For the unbiased error term

E0 and the traditional PCA estimator V̂, we have the following statistical rates

lim
d→∞

P
(
∥V̂ sgn(V̂⊤V)−V∥2,∞≤r3(d)

)
= 1, lim

d→∞
P
(
∥E0(Id − V̂V̂⊤)V∥2,∞≤r4(d)

)
= 1.

Assumption 5 (Central Limit Theorem). For the leading term V(E0) and any j ∈ [d], it

holds that

Σ
−1/2
j V(E0)

⊤ej
d→ N (0, IK),

where Σj = Cov(V(E0)
⊤ej|Ω) when Lp≪ d and Σj = Cov(V(E0)

⊤ej) when Lp≫ d.

Assumption 3 is the incoherence condition to guarantee that the information of the

eigenspace is uniformly spread. In Assumption 4 , r3(d) bounds the row-wise estimation

error for the eigenspace, while r4(d) characterizes the row-wise convergence rate of the

residual error term projected onto the spaces spanned by V̂⊥ and V consecutively, i.e.,

∥E0(Id − V̂V̂⊤)V∥2,∞ = ∥E0PV̂⊥
PV∥2,∞. Assumption 5 states that the leading term

satisfies the central limit theorem (CLT). These assumptions are for the general framework

and will be translated into case-specific conditions for concrete examples. With the above

assumptions in place, we are ready to present the formal inferential results.

4.3 Inference When Lp≫ d

We first define H = H2H1H0 to be the alignment matrix between ṼF and V, where

H2 = sgn(ṼF⊤Ṽ), H1 = sgn(Ṽ⊤V̂) and H0 = sgn(V̂⊤V). The following theorem provides

the distributional guarantee of FADI when Lp≫ d.

Theorem 4.5. When Lp≫ d, under Assumptions 1 - 5, recall Σj = Cov
(
V(E0)

⊤ej
)
for

j ∈ [d]. Define r(d) = ∆−1
(√

Kd
pL
r1(d)+ r3(d)r1(d)+

√
µK
d∆2 r1(d)

2+r2(d)+r4(d)
)
, and assume

that there exists a statistical rate η1(d) such that
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min
j∈[d]

λK
(
Σj

)
≳ η1(d) and η1(d)

−1/2r(d) = o(1).

If ∆−1r1(d)(log d)
2
√
d/p = o(1) and we take

q ≥ 2 + log(Ld)/ log log d, p′ ≥ max(2K,K + 7) and p ≥ max(2K,K + 8q − 1),

we have Σ
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (6)

Remark 5. The proof is deferred to Supplementary Materials D.9. Here η1(d) guarantees

that the asymptotic covariance is positive definite, and the rate r(d) bounds the remainder

term stemming from fast sketching approximation and eigenspace misalignment. We will

see in the concrete examples that the asymptotic covariance of the FADI estimator under

the regime Lp≫ d is the same as that of the traditional PCA estimator. Namely, we can

increase the number of repeated sketches in exchange for the same testing efficiency as the

traditional PCA. We present the corollaries of Theorem 4.5 for Examples 1 and 2 as follows.

Recall the set S of size K ′ defined in Section 3.3 for estimating σ̂2. Denote by ΣS the

population covariance matrix corresponding to Σ̂S and by δ = λK(ΣS)− σ2 the eigengap

of ΣS. Define σ̃1 = ∥ΣS∥2. We have the following corollary of Theorem 4.5 for Example 1.

Corollary 4.6 (Spiked Covariance Model). Assume that {Xi}ni=1 are i.i.d. multivariate

Gaussian. If we take K ′ = K + 1, p′ ≥ max(2K,K + 7), q ≥ 2 + log(Ld)/ log log d and

p ≥ max(2K,K + 8q − 1), then when Lp ≫ Kdrκ21λ1/σ
2, under Assumption 3 and the

conditions that

n≫ max
(
κ41(log d)

4r2λ1/σ
2,
(
κ1λ1/σ

2
)6)

and K ≪ min
((
σ̃1/δ

)−2
κ1r, µ

−2/3κ
−4/3
1 d2/3

)
,

we have that (6) holds. Furthermore, we have

Σ̃
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d], (7)

where Σ̃j =
σ2

n
Λ−1V⊤ΣVΛ−1 is a simplification of Σj under Example 1. Besides, if we
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define Λ̃ = ṼF⊤M̂ṼF and estimate Σ̃j by Σ̂j =
1
n
(σ̂2Λ̃−1 + σ̂4Λ̃−2), then we have

Σ̂
−1/2
j (ṼF −VH⊤)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (8)

Remark 6. The proof is in Supplementary Materials D.10. We compute Λ̃ distributively

across the m data splits, and the cost for computing Σ̂j is O(ndK/m). We recommend

taking p = ⌈
√
d⌉, L = ⌈κ21Kd3/2 log d⌉ and q = ⌈log d⌉ ≫ 2 + log(Ld)/ log log d for optimal

computational efficiency, where the total computation cost will be O(K3d5/2(log d)2). Our

asymptotic covariance matrix is the same as that of the traditional PCA estimator under

the incoherence condition (Wang and Fan, 2017). Specifically, Wang and Fan (2017) studied

the asymptotic distribution of the traditional PCA estimator by assuming that the spiked

eigenvalues are well-separated and diverging to infinity, which is not required by our paper.

Our scaling conditions are stronger than the estimation results in Corollary 4.2 to cancel

out the additional randomness induced by fast sketching and allow for efficient inference.

Denote by µθ = ∆−1
0

√
n/K∥Θ∥2,∞ the incoherence parameter for the Gaussian means.

Then we have the following corollary for Example 2.

Corollary 4.7 (Gaussian Mixture Models). When Lp≫ d, If we take q ≥ 2+log(Ld)/ log log d,

p ≥ max(2K,K + 8q − 1) and p′ ≥ max(2K,K + 7), under the conditions that

K = o(d), n≫ d2, K
√
n(log d)2 ≪ ∆2

0 ≪
n4/3

µ2
θd

and L≫ Kd2

p
,

we have that (6) holds. Furthermore, if we denote Σ̃j = Λ−1V⊤{FΘ⊤ΘF⊤ + nId
}
VΛ−1,

we have

Σ̃
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (9)

If we define Λ̃ = ṼF⊤M̂ṼF and estimate Σ̃j by Σ̂j = Λ̃−1 + nΛ̃−2, we have

Σ̂
−1/2
j (ṼF −VH⊤)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (10)
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Remark 7. Please refer to Supplementary Materials D.11 for the proof. We impose the

upper bound on ∆0 to guarantee that the leading term satisfies the CLT. The distributive

computation cost of Σ̂j is O(ndK/m). We recommend taking p = ⌈
√
d⌉, L = ⌈Kd3/2 log d⌉

and q = ⌈log d⌉, with total complexity of O(K3d5/2(log d)2). In Corollary 4.7, the scaling

condition for n is n≫ d2 compared to n > d in Corollary 4.2, where the extra factor d is

to guarantee fast enough convergence rate of the remainder term for inference. It can be

verified that the Cramér-Rao lower bound for unbiased estimators of V⊤ej is Λ
−1, and thus

we can also see from (9) that when ∆0 is large enough, the asymptotic efficiency of ṼF is 1

under the regime Lp≫ d.

4.4 Inference When Lp≪ d

Similar as when Lp ≫ d, we first redefine the alignment matrix between ṼF and V as

H = H1H0, where H1 = sgn(ṼF⊤Ṽ) and H0 = sgn(Ṽ⊤V). Then we have the following

theorem characterizing the limiting distribution for ṼF.

Theorem 4.8. For the case when Lp≪ d, under Assumptions 1, 2, 3 and 5, for j ∈ [d],

recall Σj = Cov(V(E0)
⊤ej|Ω) and assume that there exists a statistical rate η2(d) such that

lim
d→∞

PΩ

(
min
j∈[d]

λK
(
Σj

)
≥η2(d)

)
= 1,

d2r1(d)
4(log d)4

p2∆4
(
η2(d)∧(log d)−1

) = o(1) and
dr2(d)

2

Lp∆2η2(d)
= o(1).

Then if we take K(log d)2 ≪ p ≍ p′ ≲ d/(log d)2 and q ≥ log d we have

Σ
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (11)

Remark 8. Theorem 4.8 states that under proper scaling conditions, the FADI estimator

still enjoys asymptotic normality even when Lp≪ d. The rate η2(d) is usually at least of

order (d/λ21Lp)λmin(Cov(E0ej)). In comparison, the rate η1(d) in Theorem 4.5 is usually of

order λ−2
1 λmin(Cov(E0ej)), suggesting a larger variance and lower testing efficiency of FADI

at Lp≪ d than at Lp≫ d. The proof is deferred to Supplementary Materials D.6.
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The following corollaries of Theorem 4.8 provide case-specific distributional guarantee

for Examples 1 and 2 under the regime Lp≪ d.

Corollary 4.9 (Spiked Covariance Model). Assume {Xi}ni=1 are i.i.d. multivariate Gaus-

sian. When Lp ≪ λ−2
1 ∆2d, if we take K ′ = K + 1, K(log d)2 ≪ p ≍ p′ ≲ d/(log d)2 and

q ≥ log d, under Assumption 3 and the conditions that

n≫ max
(κ41λ21dr2L

pσ4
,
λ21σ̃

6
1K

2

∆2δ4σ4

)
(log d)4 and

Kλ21
∆2

√
µ

d
= o(1),

we have that (11) holds. Furthermore, if we define Σ̃j =
σ2

nL2B
⊤
ΩΩ

⊤ΣΩBΩ, we have

Σ̃
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (12)

If we further assume σ−2λ1κ
4
1

√
d2r/(np2L) = o(1) and estimate Σ̃j by Σ̂j =

σ̂2

nL2 B̂
⊤
ΩΩ

⊤Σ̂ΩB̂Ω,

where B̂Ω = (B̂(1)⊤, . . . , B̂(L)⊤)⊤ with B̂(ℓ) = (ṼF⊤Ŷ(ℓ)/
√
p)† for ℓ ∈ [L], we have

Σ̂
−1/2
j (ṼF −VH⊤)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (13)

Remark 9. The proof is in Supplementary Materials D.7. For the computation of Σ̂j,

apart from V̂(ℓ), the ℓ-th machine on layer 2 (see Figure 1) will send Ω(ℓ) and Ŷ(ℓ) to the

central processor, and the total communication cost for each server is O(dp). On the central

processor, the total computational cost of BΩ will be O(dpKL). Then we will compute

Ω⊤Σ̂Ω = 1√
p
Ω⊤(Ŷ(1), . . . , Ŷ(L)) + σ̂2Ω⊤Ω with total cost O

(
d(Lp)2

)
= o(d3). Compared

to Corollary 4.6, Corollary 4.9 has stronger scaling conditions on the sample size n to

compensate for the extra variability due to less fast sketches. As indicated by (5), the

asymptotic covariance matrix of Corollary 4.10 is consistent with Corollary 4.7.

Corollary 4.10 (Gaussian Mixture Models). When Lp≪ d, if we take K(log d)2 ≪ p ≍

p′ ≲ d/(log d)2 and q ≥ log d, we have that (11) holds under the conditions that

√
K

d
log d = O(1), n≫ d3L

p
, and K(log d)2

√
dnL

p
≪ ∆2

0 ≪ min

(
n,
n4/3

µ2
θd

)
.
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Furthermore, if we define Σ̃j = L−2B⊤
ΩΩ

⊤
(
FΘ⊤ΘF⊤ + nId

)
ΩBΩ, then we have

Σ̃
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (14)

If we further assume d4∆2
0 ≪ KLp2n2 and estimate Σ̃j by Σ̂j =

1
L2 B̂

⊤
ΩΩ

⊤
(
M̂+ nId

)
ΩB̂Ω,

where B̂Ω = (B̂(1)⊤, . . . , B̂(L)⊤)⊤ with B̂(ℓ) = (ṼF⊤Ŷ(ℓ)/
√
p)† for ℓ ∈ [L], we have

Σ̂
−1/2
j (ṼF −VH⊤)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (15)

Remark 10. The proof of Corollary 4.10 is deferred to Supplementary Materials D.8.

Computation of Σ̂j is very similar to Example 1 as described in Remark 9, and the total

computational cost is O(d(Lp)2) = o(d3). The stronger scaling conditions are the trade-off

for higher computational efficiency with less fast sketches.

5 Numerical Results

In this section, we conduct extensive simulation studies to assess the performance of FADI

under each example given in Section 2 and compare it with several existing methods.

5.1 Example 1: Spiked Covariance Model

We generate {Xi}ni=1 i.i.d. from N (0,Σ), where Σ = VΛV⊤ + σ2Id. We consider K = 3,

n = 20000 and set d = 500, 1000, 2000 respectively to study the asymptotic properties

of the FADI estimator under different settings. To ensure the incoherence condition is

satisfied, we set V to be the left singular vectors of a d×K i.i.d. Gaussian matrix. We take

Λ = diag(6, 4, 2) and σ2 = 1. We split the data into m = 20 subsamples, and set K ′ = 6,

p = p′ = 12 and q = 7 to compute ṼF. We set L at a range of values by taking the ratio

Lp/d ∈ {0.2, 0.6, 0.9, 1, 1.2, 2, 5, 10} for each setting and compute the asymptotic covariance

via Corollary 4.6 and Corollary 4.9 correspondingly. We define ṽ = Σ̂
−1/2
1 (ṼF −VH⊤)⊤e1,

where H = sgn(ṼF⊤V), and calculate the coverage probability by empirically evaluating
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P
(
∥ṽ∥22 ≤ χ2

3(0.95)
)
with χ2

3(0.95) being the 0.95 quantile of the Chi-squared distribution

with degrees of freedom equal to 3. Results are shown in Figure 2. Figure 2(a) shows that

as Lp/d increases, the error rate of FADI converges to that of the traditional PCA. From

Figure 2(b) we can see that when Lp/d is approaching 1 from the left, the computational

efficiency drops due to the cost of computing Σ̂1. For Figure 2(c), convergence towards the

nominal 95% level can be observed when Lp/d is much smaller or much larger than 1, while

the valley at Lp/d around 1 is consistent with the theoretical conditions on Lp/d in Section 4

and implies a possible phase-transition phenomenon on the distributional convergence of

FADI. Note that the empirical coverage is closer to the nominal level 0.95 at d = 2000

than at d ∈ {500, 1000}, which might be caused by the vanishing of some error terms for

approximation of the asymptotic covariance matrix as d grows larger. The good Gaussian

approximation of ṽ1 is further validated by Figure 2(d), where ṽ1 is the first entry of ṽ.

Based upon the low computational efficiency and poor empirical coverage at Lp/d around

1, we recommend conducting inference based on FADI at regimes Lp≫ d and Lp≪ d only.

In particular, we suggest the regime Lp≫ d if priority is given to higher testing efficiency,

and the regime Lp≪ d if one needs valid inference with faster computation.

We also compare FADI with traditional and distributed PCA (Fan et al., 2019). Results

over 100 Monte Carlos are given in Table 3. We can see that FADI significantly outperforms

both distributed PCA and traditional PCA in terms of computation time under the

distributed setting. Specifically, FADI enjoys similar error rates to traditional PCA and

distributed PCA while being computationally much faster, ranging from 65 to 717 times

faster than traditional PCA and 8.4 to 80.5 times faster than distributed PCA for a range

of d and n. Its computational advantage is more pronounced as d and n increase.
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(c) Coverage Probability (d) Q-Q Plot
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Figure 2: Performance of FADI under different settings for Example 1 (with 300 Monte Carlos).
(a) Empirical error rates of D(ṼF,V), where the grey dashed lines represent the error rates for the
traditional PCA estimator V̂; (b) Running time (in seconds) under different settings (including the
computation time of Σ̂1). For the traditional PCA, the running time is 4.86 seconds at d = 500,
20.95 seconds at d = 1000 and 99.23 seconds at d = 2000; (c) Empirical coverage probability; (d)
Q-Q plot for ṽ1 at Lp/d ∈ {0.2, 10}.

5.2 Example 2: Gaussian Mixture Models

Under this setting, we take K = 3, fix the Gaussian vector dimension at n = 20000 and set

∆2
0 = n2/3. Then we generate the Gaussian means by θk

i.i.d.∼ N
(
0,

∆2
0

2n
In

)
, k ∈ [K]. We set

d = 500, 1000, 2000 respectively and generate independent Gaussian samples {Wi}di=1 ∈ Rn

from a mixture of Gaussian with means θk, k ∈ [K] under different settings. We assign

each cluster k ∈ [K] with d/K Gaussian samples. We divide the data vertically along n

into m = 20 splits, set p = p′ = 12 and q = 7 for the final powered fast sketching. We take

the ratio Lp/d ∈ {0.2, 0.6, 0.9, 1, 1.2, 2, 5, 10} for each setting and compute the asymptotic

covariance via Corollary 4.7 and Corollary 4.10. We define ṽ = Σ̂
−1/2
1 (ṼF − VH⊤)⊤e1

where Σ̂1 is the asymptotic covariance for the first row of ṼF and H = sgn(ṼF⊤V) is the
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Parameters Error rate Running time (seconds)
d n m L FADI Traditional Distributed FADI Traditional Distributed
400 30000 15 40 0.068 0.065 0.065 0.07 4.53 0.59
400 60000 30 40 0.048 0.046 0.046 0.05 8.84 0.60
400 100000 50 40 0.037 0.036 0.036 0.05 14.84 0.62
800 100000 50 80 0.052 0.050 0.050 0.10 55.76 3.66
800 5000 50 80 0.230 0.220 0.230 0.05 3.76 2.56
800 25000 50 80 0.106 0.103 0.103 0.07 15.07 2.82
800 50000 50 80 0.073 0.070 0.070 0.07 28.68 3.23
1600 30000 15 160 0.134 0.130 0.130 0.31 80.72 27.02
1600 60000 30 160 0.095 0.092 0.092 0.35 150.75 27.29
1600 100000 50 160 0.074 0.071 0.071 0.34 243.83 27.38

Table 3: Comparison of the empirical error rates (of D(·,V)) and the running times (in seconds)
between FADI, traditional full sample PCA and distributed PCA (Fan et al., 2019) at Σ =
diag(50, 25, 12.5, 1, . . . , 1). For FADI, p = p′ = 12, K = 3, K ′ = 4, ∆ = 11.5 and q = 7.

alignment matrix, and calculate the empirical coverage probability by empirically evaluating

P
(
∥ṽ∥22 ≤ χ2

3(0.95)
)
. We perform 300 Monte Carlo simulations and the results under

different settings are shown in Figure 3. We can see that the error rate of FADI gets closer

to that of traditional PCA estimator as Lp/d increases while FADI greatly outperforms

the traditional PCA in terms of running time under different settings. Note that here d

is the sample size, and the decreasing of error rates with increasing d and fixed n (at the

same Lp/d ratio) is consistent with Corollary 4.2. Similar to Example 1, we can see from

Figure 3(b) the running time is large due to the calculation of Σ̂1 at Lp/d approaching

1 from the left, and we do not recommend inference at this regime. Validation of the

inferential properties are shown in Figure 3(c) and Figure 3(d).

6 Application to the 1000 Genomes Data

In this section, we apply FADI and the existing methods to the 1000 Genomes Data (1000

Genomes Project Consortium, 2015). We use phase 3 of the 1000 Genomes Data and focus

on common variants with minor allele frequencies larger than or equal to 0.05. There are

2504 subjects in total, and 168,047 independent variants after the linkage disequilibrium

(LD) pruning. As we are interested in the ancestry principal components to capture
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(c) Coverage Probability (d) Q-Q Plot
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Figure 3: Performance of FADI under different settings for Example 2. (a) Empirical error rates
of D(ṼF,V); (b) Running time (in seconds) under different settings. For the traditional PCA,
the running time is 5.43 seconds at d = 500, 23.32 seconds at d = 1000 and 105.58 seconds at
d = 2000; (c) Empirical coverage probability; (d) Q-Q plot for ṽ1 at Lp/d ∈ {0.2, 10}.

population structure, the sample size n is the number of independent variants after LD

pruning (n = 168, 047), and the dimension d is the number of subjects (d = 2504) (Price

et al., 2006). The data were collected from 7 super populations: (1) AFR: African; (2)

AMR: Admixed American; (3) EAS: East Asian; (4) EUR: European; (5) SAS: South

Asian; (6) PUR: Puerto Rican and (7) FIN: Finnish; and 26 sub-populations.

For the estimation of the principal components, we assume that the data follow the

spiked covariance model specified in Example 1. We also perform additional inferential

analysis that we defer to Supplementary Materials C. We set K ′ = 27, p = 50, p′ = 100,

q = 3, m = 100 and L = 80. For the estimation of the number of spikes, we take the

thresholding parameter µ0 =
(
d(np)−1/2 log d

)3/4
/12. The estimated number of spikes from

FADI is K̂ = 26, which is close to 25, the number of self-reported ethnicity groups minus
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1, i.e., K = 26 − 1. The results of the 4 leading PCs are shown in Figure 4, where a

clear separation can be observed among different super-populations. We compare the

computational times of different methods for analyzing the 1000 Genomes Data. FADI

takes 5.6 seconds at q = 3, whereas the traditional PCA method takes 595.4 seconds and

the distributed PCA method (Fan et al., 2019) takes 120.2 seconds. These results show that

FADI greatly outperforms the existing PCA methods in terms of computational time.

(a) PC 1 versus PC 2 (b) PC 1 versus PC 3 (c) PC 1 versus PC 4

(d) PC 2 versus PC 3 (e) PC 2 versus PC 4 (f) PC 3 versus PC 4

Figure 4: The top 4 principal components of the 1000 Genomes Data. For the first two PCs,
PC 1 separates African (AFR) super-population from the others, whereas PC 2 separates East
Asian (EAS) from the others. As for PC 3 and PC 4, South Asian (SAS) and Ad Mixed American
(AMR) are well separated from the rest of the super-populations by PC 3, while PC 4 presents
some additional separation.

7 Discussion

In this paper, we develop a FAst DIstributed PCA algorithm (FADI) to address the

challenges posed by high-dimensional PCA computations, offering a compelling balance
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between computational efficiency and result accuracy. The main idea is to apply distributed-

friendly random sketches so as to reduce the data dimension and aggregate the results from

multiple sketches to improve the statistical accuracy and accommodate federated data.

In contrast to the computationally expensive traditional full sample PCA, which is not

suitable for federated data, FADI significantly reduces computational costs and is well-suited

for large federated data. While existing distributed PCA methods (Fan et al., 2019) can

handle federated data by applying traditional PCA to each data split, they lack scalability

when the dimension d is large. On the other hand, existing fast PCA methods (Halko

et al., 2011; Chen et al., 2016) use random sketches on full data, allowing for large d but

lack scalability for large sample sizes n and are not applicable to federated data. FADI

addresses the limitations of both distributed PCA and fast PCA methods, offering significant

scalability when both d and n are large or when dealing with federated data. It achieves

computational scalability by computing multiple random sketches to split datasets and

efficiently aggregating the results across them. Theoretical analysis shows that FADI enjoys

the same non-asymptotic error rate as the traditional PCA when the number of repeated

sketches L is of order d/p, which is also affirmed by extensive simulation studies. We also

establish distributional guarantee for the FADI estimator and perform numerical experiments

to validate the potential phase-transition phenomenon in distributional convergence.

Fast PCA algorithms using random sketches usually require the data to have certain

“almost low-rank” structures, without which the approximation might not be accurate (Halko

et al., 2011). It is of future research interest to investigate whether the proposed FADI

approach can be extended to non-low-rank settings. In Step 3 of FADI, we aggregate local

estimators by taking a simple average over the projection matrices. It would be of future

research interest to explore the performance of other weighted averages.
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Supplementary Materials to

Dimension Reduction for Large-Scale Federated Data: Statistical
Rate and Asymptotic Inference

This file contains the supplementary materials to the paper “Dimension Reduction for

Large-Scale Federated Data: Statistical Rate and Asymptotic Inference”. Section A presents

additional applications of FADI under the degree-corrected mixed membership (DCMM)

model and the incomplete matrix inference model. In Section B we provide numerical results

for Example 3 and Example 4 along with some additional simulation results for Example 1

under the genetic setting. In Section C, we present additional real data application of FADI

to the 1000 Genomes Data for inference under Example 3. In Section D, we present the

proofs for the main theorems, propositions and corollaries given in Section 4 of the main

paper. In Section E we give the proofs of some technical lemmas useful for the proofs of the

main theorems. In Section F, we present the modified version of Wedin’s theorem, which

is used in several proofs. Section G provides the supplementary figures deferred from the

main paper.

A Additional Applications to Other Statistical Models

As mentioned in Section 1, FADI is developed within a general framework that encompasses

multiple statistical models. In the main text, we present applications of FADI to the spiked

covariance model and the Gaussian mixture models (GMM) for the purpose of illustration.

In this section, we provide additional applications of FADI to the degree-corrected mixed

membership (DCMM) model and the incomplete matrix inference model. The specific

model setups are provided below.
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Example 3 (Degree-Corrected Mixed Membership (DCMM) Model (Fan et al., 2022)). Let

X ∈ Rd×d be a symmetric adjacency matrix for an undirected graph of d nodes, where

Xij = 1 if nodes i, j ∈ [d] are connected and Xij = 0 otherwise. Assume Xij’s are

independent for i ≤ j and E(X) = ΘΠPΠ⊤Θ, where Θ = diag(θ1, . . . , θd) stands for

the degree heterogeneity matrix, Π = (π1, . . . ,πd)
⊤ ∈ Rd×K is the stacked community

assignment probability vectors and P ∈ RK×K is a symmetric rank-K matrix with constant

entries Pkk′ ∈ (0, 1) for k, k′ ∈ [K]. Then M = E(X) = ΘΠPΠ⊤Θ and M̂ = X.1 The

goal is to infer the community membership profiles Π. Recall M = VΛV⊤. Since V

and ΘΠ share the same column space, we can make inference on Π through V.2 In

this paper, we assume that there exist constants C ≥ c > 0 such that σK(Π) ≥ c
√
d/K,

c ≤ λK(P) ≤ λ1(P) ≤ CK and maxi θi ≤ Cmini θi, where we define θ = maxi θ
2
i as the rate

of signal strength. We assume that the adjacency matrix is distributed across m sites, where

on the s-th site we observe the connectivity matrix X(s) ∈ Rd×ds and X = (X(1), . . . ,X(m)).

Example 4 (Incomplete Matrix Inference (Chen et al., 2019)). Assume that M = VΛV⊤

is a symmetric rank-K matrix, and S ⊆ [d] × [d] is a subset of indices. We only observe

the perturbed entries of M in the subset S. Specifically, for i ≤ j, we denote δij = δji =

I{(i, j) ∈ S}, and δij
i.i.d∼ Bernoulli(θ) is an indicator for whether the (i, j)-th entry is

missing. Then for i, j ∈ [d], the observation for Mij is Xij = (Mij + εij)δij, where εij = εji

are i.i.d. random variables satisfying E(εij) = 0, E(ε2ij) = σ2 and supi≤j |εij| ≲ σ log d.3

Then to adjust for scaling, we define the observed data as M̂ = [M̂ij] = θ̂−1[Xij], where

1In the case where self-loops are absent, X will be replaced by X′ = X− diag(X) and E will be replaced
by E′ = E− diag(X). Our theoretical results hold for both cases.

2To address the degree heterogeneity, one can perform the SCORE normalization to cancel out Θ (Jin,
2015).

3We can generalize the results to sub-Gaussian error εij ’s with variance proxy σ2 by taking the truncated
error εtij = εijI{|εij | ≤ 4σ

√
log d}, and by the maximal inequality for sub-Gaussian random variables we

know that with probability at least 1−O(d−6), εij = εtij ,∀i, j ∈ [d], and the theorems can be generalized
with minor modifications.
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θ̂ = 2|S|/
(
d(d + 1)

)
.4 Consider the distributed setting where the data are split along

d on m servers, where X(s) ∈ Rd×ds stands for the observations on the s-th server and

M̂ = θ̂−1(X(1), . . . ,X(m)). The goal is to infer V from M̂ in the presence of missing data.

In Example 3 and Example 4, the sample size n coincides with the dimension d, and we

consider the distributed settings along d. Table 4 presents the computational complexities

and parameter choices of FADI for these two examples.

Complexity p L

DCMM model O(d2p/m+ dKpL log d)
√
d

√
d

Incomplete matrix inference O(d2p/m+ dKpL log d)
√
d

√
d

Table 4: Computational complexities and parameter choice of FADI for PCA estimation under
Example 3 and Example 4, where K is the rank of M, d is the dimension of M, m is the number
of data splits, p is the fast sketching dimension and L is the number of repeated sketches.

A.1 Raw Data Processing

The preliminary data processing for generating M̂ in Step 0 of FADI is presented as follows.

Example 3: Recall that the adjacency matrix is stored distributively on m sites, and

for the s-th site we observe the connectivity matrix X(s). Then for s ∈ [m], define

M̂(s) = (e⊤s ⊗Id) diag(X
(1), . . . ,X(m)), where ⊗ is the Kronecker product, and {es}ms=1 ⊆ Rm

is the canonical basis for Rm. Namely, M̂(s) is the s-th observation X(s) augmented by zeros,

and M̂ =
∑m

s=1 M̂
(s) = (X(1), . . . ,X(m)) = X. No preliminary computation is needed.

Example 4: Recall that we observe the split data {X(s)}ms=1 with missing entries on

m servers. Define M̂(s) = θ̂−1(e⊤s ⊗ Id) diag(X
(1), . . . ,X(m)) for the s-th server, where

θ̂ = 2|S|/
(
d(d+ 1)

)
, then we have M̂ =

∑m
s=1 M̂

(s) = θ̂−1(X(1), . . . ,X(m)).

4In practice, we can estimate V by X rather than by M̂ = θ̂−1X, since the two matrices share exactly
the same eigenvectors. However, we need the factor θ̂−1 to preserve correct scaling for the estimation of
eigenvalues as well as the follow-up inference. Please see Theorem 4.3 and Corollary A.4 for more details.
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A.2 Complexity Analysis

Communication Computation
Example 3 Example 4 Example 3 Example 4

Step 0 N/A O(1) N/A O(d
2

m
)

Step 1 O(mpd) O(mpd) Ŷ(s,ℓ) : O(d
2p
m ) Ŷ(s,ℓ) : O(d

2p
m )

Step 2 O(LKd) O(LKd)
Ŷ(ℓ) : O(mdp)

V̂(ℓ) : O(dp2)

Ŷ(ℓ) : O(mdp)

V̂(ℓ) : O(dp2)

Step 3 N/A N/A ṼF : O(dKp′Lq + dp′2)

Total O(mpd+ LKd) O(mpd+ LKd) O(d
2p
m + dKp′Lq) O(d

2p
m + dKp′Lq)

Table 5: Communication and computational costs for Example 3 and Example 4. For the simplicity
of presentation, we assume maxs∈[m] ds ≍ d/m. We only recommend computing ṼF instead of Ṽ
for Example 3 and Example 4.

Table 5 provides the complexities of each step for Example 3 and Example 4. When m

can be customized, we recommend taking m ≍
√
d for optimal efficiency. Since direct SVD

on Σ̃ will induce computational cost of order d3 and we only suggest ṼF as the eigenspace

estimator. If we take p ≍
√
d, L ≍ d/p, p′ ≍ K and q ≍ log d, the total computational cost

will be O(d5/2/m+K2d3/2 log d). Computational costs for the inferential procedures will

be discussed in Section A.4.

A.3 Statistical Rates and Rank Estimation

Below, we present the corollary of Theorem 4.1 that illustrates the error rates of FADI in

Example 3 and Example 4. The proof is deferred to Section D.3.

Corollary A.1. For Example 3 and Example 4, we have the following error bounds under

corresponding regularity conditions.

• Example 3: Suppose θ≥K2d−1/2+ϵ for some constant ϵ > 0. If we take p′ ≥

4



max(2K,K + 7), p ≳
√
d and q = ⌈log d⌉, it holds that

(
E|D(ṼF,V)|2

)1/2
≲ K

√
K

dθ
+K

√
K

pLθ
. (A.16)

• Example 4: Define κ2 = |λ1|/∆. Suppose θ ≥ d−1/2+ϵ for some constant ϵ > 0,

σ/∆ ≪ d−1
√
pθ, ∥V∥2,∞ ≤

√
µK/d for some µ ≥ 1 and κ2µK ≪ d1/4, if we take

p′ ≥ max(2K,K + 7), p ≳
√
d and q = ⌈log d⌉, it holds that

(
E|D(ṼF,V)|2

)1/2
≲

√
K

(
κ2µK√
dθ

+

√
dσ2

∆2θ

)
+

√
Kd

pL

(
κ2µK√
dθ

+

√
dσ2

∆2θ

)
. (A.17)

For Example 3, our estimation rate in (A.16) matches the inferential results in (Fan

et al., 2022). Section A.4 gives a detailed comparison with the method in (Fan et al., 2022)

in terms of the limiting distributions. For Example 4, our error rate in (A.17) matches the

results in (Chen et al., 2021). Recall we show in Theorem 4.3 that when the rank K is

unknown, it can be recovered with high probability by properly choosing the thresholding

parameter µ0. Corollary A.2 specifies the choice of µ0 for Example 3 and Example 4. Please

refer to Section D.5 for the proof.

Corollary A.2. For Examples 3 and 4, we specify the choice of µ0 under certain regularity

conditions.

• Example 3: Define θ̂ = d−2
∑

i≤j M̂ij, then under the condition that θ ≥ K2d−1/2+ϵ

for some constant ϵ > 0 and
√
d ≲ p≪ (log d)−2d, if we take µ0 = (θ̂/p)1/2d log d/12,

with probability at least 1−O
(
d−(L∧20)/2), we have K̂ = K.

• Example 4: When θ ≥ d−1/2+ϵ for some constant ϵ > 0, ∥V∥2,∞ ≤
√
µK/d for some

µ ≥ 1, κ22µ
2K ≪ (log d)2,

√
d ≲ p ≪ (log d)−2d and (pθ)−1/4

√
dσ/∆ log d = o(1), if
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we take µ0 = dσ̂0 log d(pθ̂)
−1/2/12, where σ̂0 =

(∑
(i,j)∈S(θ̂M̂ij)

2/|S|
)1/2

, then with

probability at least 1−O
(
d−(L∧20)/2), we have K̂ = K.

A.4 Inferential Results When Lp≫ d

In this section, we provide the inferential results of Example 3 and Example 4 based on

Theorem 4.5.

A.4.1 Degree-Corrected Mixed Membership Models

Corollary A.3. When θ ≥ K2d−1/2+ϵ for some constant ϵ > 0 and K = o(d1/32), if we

take p ≳
√
d, p′ ≥ max(2K,K + 7), L ≫ K5d2/p and q ≥ 2 + log(Ld)/ log log d, then (6)

holds. Furthermore, if we denote Σ̃j = Λ−1V⊤ diag
(
[Mjj′(1−Mjj′)]j′∈[d]

)
VΛ−1, we have

Σ̃
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (A.18)

Besides, define M̃ = (ṼFṼF⊤)M̂(ṼFṼF⊤) and Λ̃ = ṼF⊤M̂ṼF, then if we estimate Σ̃j by

Σ̂j = Λ̃−1ṼF⊤ diag
(
[M̃jj′(1− M̃jj′)]j′∈[d]

)
ṼFΛ̃−1, we have

Σ̂
−1/2
j (ṼF −VH⊤)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (A.19)

Remark 11. The proof is deferred to Section D.12. We can obtain Λ̃ by computing ṼF⊤X(s)

in parallel for s ∈ [m], and the computational cost for Σ̂j is O(d
2K/m). To achieve the

optimal computational efficiency, we would take p = ⌈
√
d⌉ and L = ⌈K5d3/2 log d⌉. Hence

taking q = ⌈log d⌉ is sufficient, and the total computational cost will be O(K7d5/2(log d)2).

Inferential analyses on the membership profiles has received attention in previous works

(Fan et al., 2022; Shen and Lu, 2020). Fan et al. (2022) studied the asymptotic normality
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of the spectral estimator under the DCMM model with complicated assumptions on the

eigen-structure (see Conditions 1, 3, 6, 7 in their paper). In comparison, we only impose non-

singularity conditions on the membership profiles, but have a stronger scaling condition on

the signal strength to facilitate the divide-and-conquer process. Our asymptotic covariance

is almost the same as Fan et al. (2022)’s, suggesting the same level of asymptotic efficiency.

A.4.2 Incomplete Matrix Inference

Corollary A.4. When Lp≫ κ22Kd
2 and θ ≥ d−1/2+ϵ for some constant ϵ > 0, if we take

p′ ≥ max(2K,K +7), p ≳
√
d and q ≥ 2+ log(Ld)/ log log d, then under Assumption 3 and

the conditions that

κ62K
3µ3 = o(d1/2) and σ/∆ ≪

√
θ/d ·min

((
κ22
√
µK + κ2

√
K log d

)−1
,
√
p/d
)
,

we have that (6) holds. Furthermore, if we denote Σ̃j = Λ−1V⊤ diag
(
[M2

jj′(1 − θ)/θ +

σ2/θ]dj′=1

)
VΛ−1, we have

Σ̃
−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (A.20)

Define Λ̃ = ṼF⊤M̂ṼF and M̃ = ṼFΛ̃ṼF⊤. If we estimate σ2 by σ̂2 =
∑

(i,i′)∈S(θ̂M̂ii′ −

M̃ii′)
2/|S| and Σ̃j by Σ̂j = Λ̃−1ṼF⊤ diag

(
[M̃2

jj′(1− θ̂)/θ̂ + σ̂2/θ̂]dj′=1

)
ṼFΛ̃−1, we have

Σ̂
−1/2
j (ṼF −VH⊤)⊤ej

d→ N (0, IK), ∀j ∈ [d]. (A.21)

Remark 12. Please see Supplementary Materials D.13 for the proof of Corollary A.4. We

compute Λ̃ by calculating ṼF⊤X(s) in parallel, and then Λ̃ can be communicated across

servers at low cost for computing σ̂2. The total computational cost for calculating Σ̂j is
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O(d2K/m). We recommend taking p = ⌈
√
d⌉, L = ⌈κ22Kd3/2 log d⌉ and q = ⌈log d⌉, and

the total computational cost will be O(K3d5/2(log d)2). Chen et al. (2019) studied the

incomplete matrix inference problem through penalized optimization, and their testing

efficiency is the same as ours.

We do not have distributional results for Examples 3 and 4 under the regime Lp≪ d. An

intuitive explanation would be that the information contained in each entry is independent

for Example 3 and Example 4, and when Lp≪ d, too much information will be lost from

the d× d graph or matrix. In comparison, we can still recover information from Examples 1

and 2 under the regime Lp≪ d due to the correlation structure of the matrix.

B Additional Simulation Results

In this section we present the simulation results for Example 3 and Example 4, and we

provide some additional simulation results for Example 1 to evaluate the performance of

FADI under the genetic settings.

B.1 Example 3: Degree-Corrected Mixed Membership Models

We consider the mixed membership model without degree heterogeneity for the simulation,

i.e., Θ =
√
θId, and M = θΠPΠ⊤. For two preselected nodes j, j′ ∈ [d], we test H0 : πj =

πj′ vs. H1 : πj ̸= πj′ by testing

whether V⊤(ej − ej′) = 0. To simulate the data, we set θ = 0.9, K = 3, and set the

membership profiles Π and the connection probability matrix P to be

8



πj =



(1, 0, 0)⊤ if 1 ≤ j ≤ ⌊d/6⌋
(0, 1, 0)⊤ if ⌊d/6⌋ < j ≤ ⌊d/3⌋
(0, 0, 1)⊤ if ⌊d/3⌋ < j ≤ ⌊d/2⌋
(0.6, 0.2, 0.2)⊤ if ⌊d/2⌋ < j ≤ ⌊5d/8⌋
(0.2, 0.6, 0.2)⊤ if ⌊5d/8⌋ < j ≤ ⌊3d/4⌋
(0.2, 0.2, 0.6)⊤ if ⌊3d/4⌋ < j ≤ ⌊7d/8⌋
(1/3, 1/3, 1/3)⊤ if ⌊7d/8⌋ < j ≤ ⌊d⌋

, P =

 1 0.2 0.1
0.2 1 0.2
0.1 0.2 1

 .

We test the performance of FADI under d ∈ {500, 1000, 2000} respectively, and under

each setting of d, we take m = 10, p = p′ = 12, q = 7 and set L by the ratio Lp/d ∈

{0.2, 0.6, 0.9, 1, 1.2, 2, 5, 10}. For each setting, we conduct 300 independent Monte Carlo

simulations. To perform the test, with minor modifications of Corollary A.3, we can show

that

Σ̃
−1/2
j,j′ (ṼFH−V)⊤(ej − ej′)

d→ N (0, IK), (B.22)

where the asymptotic covariance is defined as Σ̃j,j′ = Σ̃j + Σ̃j′ and can be consistently

estimated by Σ̂j,j′ = Σ̂j + Σ̂j′ . We first preselect two nodes, which we denote by j and j′,

with membership profiles both equal to (0.6, 0.2, 0.2)⊤ and calculate the empirical coverage

probability of P
(
∥d̃∥22 ≤ χ2

3(0.95)
)
, where d̃ = Σ̂

−1/2
j,j′ ṼF⊤(ej − ej′). We also evaluate

the power of the test by choosing two nodes with different membership profiles equal to

(0.6, 0.2, 0.2)⊤ and (1/3, 1/3, 1/3)⊤ respectively, which we denote by j and k. We empirically

calculate the power P
(
∥d̃′∥22 ≥ χ2

3(0.95)
)
, where d̃′ = Σ̂

−1/2
j,k ṼF⊤(ej − ek). Under the regime

Lp/d < 1, we calculate the asymptotic covariance referring to Theorem 4.8 by

Σ̂j,j′ = L−2B̂⊤
ΩΩ⊤ diag

(
[M̃jk(1− M̃jk) + M̃j′k(1− M̃j′k)]

d
k=1

)
ΩB̂Ω,

where B̂Ω = (B̂(1)⊤, . . . , B̂(L)⊤)⊤ with B̂(ℓ) = (ṼF⊤Ŷ(ℓ)/
√
p)† ∈ Rp×K for ℓ = 1, . . . , L. We

also apply k-means to ṼF to differentiate different membership profiles and compare the

9



misclustering rate with the traditional PCA. The results of different settings are shown

in Figure 5. We can see from Figure 5(d) that under the regime Lp/d < 1, the empirical

coverage probability is zero under all settings, which validates the necessity of Lp/d≫ 1

for performance guarantee. Figure 5(f) demonstrates the asymptotic normality of d̃1 at

Lp/d = 10 and poor Gaussian approximation of FADI at Lp/d = 0.2, where d̃1 is the first

entry of d̃.

We also compare FADI with the SIMPLE method (Fan et al., 2022) on the membership

profile inference under the DCMM model. The SIMPLE method conducted inference directly

on the traditional PCA estimator V̂ and adopted a one-step correction to the empirical

eigenvalues for calculating the asymptotic covariance matrix. We compare the inferential

performance of FADI at Lp/d = 10 with the SIMPLE method (under 100 independent

Monte Carlos), and summarize the results in Table 6, where the running time includes

both the PCA procedure and the computation time of Σ̂j,j′ . Compared to the SIMPLE

method, our method has a similar coverage probability and power but is computationally

more efficient.

Parameters Coverage probability Power Running time (seconds)
d p L FADI SIMPLE FADI SIMPLE FADI SIMPLE
500 12 417 0.91 0.92 0.87 0.88 0.21 0.73
1000 12 833 0.94 0.94 1.00 1.00 0.69 6.77
2000 12 1667 0.95 0.98 1.00 1.00 2.61 59.42

Table 6: Comparison of the coverage probability, power and running time (in seconds) between
FADI and SIMPLE (Fan et al., 2022) under different settings of d. In all settings, we take m = 10,
p = p′ = 12, q = 7 and set Lp/d = 10 for FADI.

B.2 Example 4: Incomplete Matrix Inference

For the true matrix M, we consider K = 3, take V to be the K left singular vectors of a

pregenerated d×K i.i.d. Gaussian matrix, and take Λ = diag(6, 4, 2). We consider the

10
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Figure 5: Performance of FADI under different settings for Example 3. (a) Empirical error rates
of D(ṼF,V); (b) Misclustering rate for ṼF by K-means with grey dashed lines representing the
misclustering rates for the traditional PCA estimator V̂; (c) Running time (in seconds) under
different settings (including computing Σ̂j,j′). For the traditional PCA, the running time is 0.43
seconds at d = 500, 3.77 seconds at d = 1000 and 32.62 seconds at d = 2000; (d) Empirical coverage
probability (1− Type I error); (e) Power of the test; (f) Q-Q plot for d̃1 at Lp/d ∈ {0.2, 10}.

distributed setting m = 10, and set the dimension at d ∈ {500, 1000, 2000} respectively, and

set θ = 0.4 and σ = 8/d for each setting. Then we generate the entry-wise noise by εij
i.i.d.∼

N (0, σ2) for i ≤ j, and subsample non-zero entries of M with probability θ = 0.4. Under

each setting, we perform FADI at p = p′ = 12, q = 7 and Lp/d ∈ {0.2, 0.6, 0.9, 1, 1.2, 2, 5, 10}

for the computation of ṼF. Define ṽ = Σ̂
−1/2
1 (ṼF−VH⊤)⊤e1 with Σ̂1 being the asymptotic

covariance for ṼF⊤e1 defined in Corollary A.4 and H = sgn(ṼF⊤V), and empirically

calculate the coverage probability, i.e., P
(
∥ṽ∥22 ≤ χ2

3(0.95)
)
. Similar as in Section B.1, for

11



the regime Lp < d, we refer to Theorem 4.8 and calculate Σ̂1 by

Σ̂1 = L−2B̂⊤
ΩΩ

⊤ diag
(
[M̃2

1j(1− θ̂)/θ̂ + σ̂2/θ̂]dj=1

)
ΩB̂Ω.

Results over 300 Monte Carlo simulations are provided in Figure 6. Figure 6(a) illustrates

that the error rate of FADI is almost the same as the traditional PCA as Lp/d gets larger,

and Figure 6(b) shows that the computational efficiency of FADI greatly outperforms the

traditional PCA for large dimension d. We can observe from Figure 6(c) that the confidence

interval performs poorly at Lp/d < 1 with the coverage probability equal to 1, which is

consistent with the theoretical conditions in Corollary A.4 for distributional convergence.

Figure 6(d) shows the good Gaussian approximation of FADI at Lp/d = 10, and the results

at Lp/d = 0.2 is consistent with Figure 6(c).

B.3 Additional Results for Example 1 in the Genetic Setting

Section 5.1 compares FADI with several existing methods under a relatively large eigengap.

In practice, the eigengap of the population covariance matrix may not be large. To assess

different methods in a more realistic scenario, we imitate the setting of the 1000 Genomes

Data, where we take the number of spikes K = 20, σ2 = 0.4 and the eigengap to be ∆ = 0.2.

We generate the data by {Xi}ni=1
i.i.d.∼ N (0,Σ), where

Σ = diag(2.4, 1.2, 0.6, . . . , 0.6︸ ︷︷ ︸
K−2

, 0.4 . . . , 0.4).

The dimension is d = 2504 and the sample size is n = 160, 000. Error rates and running

times using different algorithms are compared under different number of splits m for the

sample size n. For FADI, we take L = 75, p = p′ = 40 and q = 7.

12
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Figure 6: Performance of FADI under different settings for Example 4. (a) Empirical error rates
of D(ṼF,V) with traditional PCA error rates as the reference; (b) Running time (in seconds)
under different settings (including the computational time of Σ̂1). For the traditional PCA, the
running time is 0.42 seconds at d = 500, 3.48 seconds at d = 1000 and 30.62 seconds at d = 2000;
(c) Empirical coverage probability; (d) Q-Q plot for ṽ1 at Lp/d = 10.

Table 7 shows that the number of sample splits m has little impact on the error rate of

FADI as expected, while the error rate of Fan et al. (2019)’s distributed PCA increases as

m increases. FADI is much faster than the other two methods in all the practical settings

when the eigengap is small. This suggests that in practical problems where the sample

size is large and the eigengap is small, FADI not only enjoys much higher computational

efficiency compared to the existing methods, but also gives stable estimation for different

sample splits along the sample size n. Although the settings of small eigengap are of major

interest in this section, we still conduct simulations where the eigengap increases gradually

to see how it affects the performance of FADI. Table 8 shows that as the eigengap gets
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larger, the error rate of FADI gets closer to that of the traditional full sample PCA, whereas

the error rate ratio of distributed PCA to FADI gets below 1, but are still above 0.9 when

the eigengap is larger than 1. As to the running time, FADI outperforms the other two

methods in all the settings. In summary, when the eigengap grows larger, the performance

of the three algorithms becomes similar to what we see in Section 5.1.

FADI Traditional PCA Distributed PCA m
Error Rate 2.296 1.811 (0.79) 2.629 (1.15) 10

2.294 1.811 (0.79) 3.412 (1.49) 20
2.294 1.811 (0.79) 3.955 (1.72) 40
2.294 1.811 (0.79) 4.215 (1.84) 80

Running Time 5.76 983.86 (170.8) 189.76 (32.9) 10
3.82 992.09 (259.8) 144.18 (37.8) 20
2.86 972.47 (339.5) 119.29 (41.6) 40
2.37 968.43 (408.5) 99.39 (41.9) 80

Table 7: Comparison of the error rates and running times (in seconds) among FADI, full sample
PCA and distributed PCA (Fan et al., 2019), using different numbers of sample splits m in the
genetic setting. Values in the parentheses represent the error rate ratios or the computational
time ratios of each method with respect to FADI.

FADI Traditional PCA Distributed PCA Eigengap
Error Rate 1.28 1.06 (0.82) 1.57 (1.22) 0.4

0.77 0.65 (0.85) 0.71 (0.92) 0.8
0.48 0.42 (0.88) 0.43 (0.90) 1.6
0.31 0.29 (0.92) 0.29 (0.93) 3.2

Running Time 2.76 925.15 (334.7) 115.29 (41.7) 0.4
2.77 916.52 (331.4) 114.76 (41.5) 0.8
2.69 922.85 (342.7) 114.75 (42.6) 1.6
2.77 919.20 (332.2) 115.26 (41.7) 3.2

Table 8: Comparison of the error rates and running times (in seconds) among FADI, full sample
PCA and distributed PCA (Fan et al., 2019) for different eigengaps ∆ in the genetic setting.
The number of sample splits m is 40 for FADI and distributed PCA. The settings of the other
parameters are the same as those in Table 7.
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C Additional Application to the 1000 Genomes Data:

Inference on Ancestry Membership Profiles

In this section, we consider the application of FADI to the 1000 Genomes Data for inferential

analysis under the model specified by Example 3. We use the same pruned data described

in Section 6, and generate an undirected graph from the 1000 Genomes Data.

To increase the randomness for better fitting of the model setting in Example 3, we

sample 1000 out of the total 168047 variants for generating the graph. More specifically,

we treat each subject as a node, and for each given pair of subjects (i, j), we define a

genetic similarity score sij =
∑1000

k=1 I {xik = xjk}, where xik refers to the genotype of the

k-th variant for subject i. We denote by s0.95 the 0.95 quantile of {sij}i<j. Subjects i and

j are connected if and only if sij > s0.95. Denote by A the adjacency matrix (allowing

no self-loops). We include only four super populations: AFR, EAS, EUR and SAS, with

2058 subjects in total. We are interested in testing whether two given subjects i and j

belong to the same super population, i.e., H0 : Vi = Vj vs. H1 : Vi ̸= Vj. We divide the

adjacency matrix equally into m = 10 splits, and perform FADI with p = 50, p′ = 50, q = 3

and L = 1000. The rank estimator from FADI is K̂ = 4 by setting µ0 = (θ̂/p)1/2d log d/12,

where θ̂ is the average degree estimator defined in Section 3.3. We can see the estimated

rank is consistent with the number of super populations. We apply K-means clustering to

the FADI estimator ṼF
K̂
, and calculate the misclustering rate by treating the self-reported

ancestry group as the ground truth. The misclustering rate of FADI is 0.135, with compu-

tation time of 3.7 seconds. In comparison, the misclustering rate for the traditional PCA

method is 0.134 with computation time of 26.5 seconds, and the correlation between the

top four PCs for the traditional PCA and FADI are 0.997, 0.994, 0.994 and 0.996 respectively.
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To conduct pairwise inference on the ancestry membership profiles, we preselect 16

subjects, with 4 subjects from each super population. We apply Bonferroni correction to

correct for the multiple comparison issue and set the level at 0.05×
(
16
2

)−1
= 4.17×10−4. We

estimate the asymptotic covariance matrix by Corollary A.3 and correct M̃ by setting entries

larger than 1 to 1 and entries smaller than 0 to 0. The pairwise p-values are summarized in

Figure 7. The computational time for computing the covariance matrix is 0.31 seconds. We

can see that most of the comparison results are consistent with the true ancestry groups,

while the inconsistency could be due to the mixed memberships of certain subjects and the

unaccounted sub-population structures.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1.0000 0.1290 0.5478 0.0169 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1290 1.0000 0.8137 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.5478 0.8137 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0169 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 1.0000 0.2621 0.1150 0.0129 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.2621 1.0000 0.7227 0.0158 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000 0.1150 0.7227 1.0000 0.0385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0129 0.0158 0.0385 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2774 0.0067 0.0102 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2774 1.0000 0.0130 0.0253 0.0000 0.0000 0.0000 0.0000
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0067 0.0130 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 0.0253 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0855 0.0194 0.0014
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0855 1.0000 0.5623 0.0000
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0194 0.5623 1.0000 0.0000
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 1.0000

Node Degrees 31 11 26 52 376 377 367 391 90 77 123 48 38 20 20 80

AFR EAS EUR SAS

Figure 7: p-values for pairwise comparison among 16 preselected subjects. For subjects pair (i, j),
p-value is defined as P

(
χ2
K̂

> ∥d̃∥22
)
, where χ2

K̂
is Chi-squared distribution with degrees of freedom

equal to K̂, and d̃ = Σ̂
−1/2
i,j ṼF

K̂
(ei − ej) with Σ̂i,j being the asymptotic covariance matrix defined

in Section B.1.

D Proof of Main Theoretical Results

In this section we provide proofs of the theoretical results in Section 4. For the inferential

results, we will present proofs of the theorems under the regime Lp≪ d first, which takes
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into consideration the extra variability caused by the fast sketching, and then give proofs of

the theorems under the regime Lp≫ d where the fast sketching randomness is negligible.

D.1 Unbiasedness of Fast Sketching With Respect to M̂

We show by the following Lemma D.1 that the fast sketching is unbiased with respect to M̂

under proper conditions.

Lemma D.1. Let V̂dΛ̂dV̂
⊤
d be the eigen-decomposition of M̂, and let V̂ = (v̂1, . . . , v̂K)

be the stacked K leading eigenvectors of M̂ corresponding to the eigenvalues with largest

magnitudes. When ∥Σ′ − V̂V̂⊤∥2 < 1/2, we have that Col(V′) = Col(V̂), where Col(·)

denotes the column space of the matrix.

Proof. We will first show that V̂⊤
d Σ

′V̂d is diagonal. For any j ∈ [d], we let Dj = Id− 2eje
⊤
j ,

and recall we denote the eigen-decomposition of M̂ by M̂ = V̂dΛ̂dV̂
⊤
d . Then conditional on

M̂ we have

V̂dDjV̂
⊤
d Ŷ

(ℓ)Ŷ(ℓ)⊤V̂dDjV̂
⊤
d = V̂dDjV̂

⊤
d V̂dΛ̂dV̂

⊤
d Ω

(ℓ)Ω(ℓ)⊤V̂dΛ̂dV̂
⊤
d V̂dDjV̂

⊤
d

= V̂dΛ̂d(DjV̂
⊤
d Ω

(ℓ))(Ω(ℓ)⊤V̂dDj)Λ̂dV̂
⊤
d

d
= V̂dΛ̂dV̂

⊤
d Ω

(ℓ)Ω(ℓ)⊤V̂dΛ̂dV̂
⊤
d = Ŷ(ℓ)Ŷ(ℓ)⊤,

where the second equality is due to the fact that diagonal matrices are commutative, and

the last but one equivalence in distribution is due to the fact that DjV̂
⊤
d Ω

(ℓ) d
= V̂⊤

d Ω
(ℓ).

Also we know the top K eigenvectors of V̂dDjV̂
⊤
d Ŷ

(ℓ)Ŷ(ℓ)⊤V̂dDjV̂
⊤
d are V̂dDjV̂

⊤
d V̂

(ℓ), and

thus V̂dDjV̂
⊤
d V̂

(ℓ) d
= V̂(ℓ). Hence we have

V̂⊤
d E
(
V̂(ℓ)V̂(ℓ)⊤|M̂

)
V̂d = V̂⊤

d V̂dDjV̂
⊤
d E
(
V̂(ℓ)V̂(ℓ)⊤|M̂

)
V̂dDjV̂

⊤
d V̂d

= DjV̂
⊤
d E
(
V̂(ℓ)V̂(ℓ)⊤|M̂

)
V̂dDj = DjV̂

⊤
d Σ

′V̂dDj.
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The above equation holds for any j ∈ [d], which suggests that V̂⊤
d E
(
V̂(ℓ)V̂(ℓ)⊤|M̂

)
V̂d

is diagonal and that Σ′ and M̂ share the same set of eigenvectors.

Now under the condition that
∥∥∥Σ′ − V̂V̂⊤

∥∥∥
2
< 1/2, for any j ∈ [K], we denote by v̂j

the j-th column of V̂, and we have

∥Σ′v̂j∥2 =
∥∥∥(Σ′ − V̂V̂⊤ + V̂V̂⊤

)
v̂j

∥∥∥
2
≥ 1−

∥∥∥Σ′ − V̂V̂⊤
∥∥∥
2
> 1− 1

2
=

1

2
.

In other words, the corresponding eigenvalue of v̂j in Σ′ is larger than 1/2. On the other

hand, by Weyl’s inequality (Franklin, 2012), the rest of the d−K eigenvalues of Σ′ should

be less than 1/2. Therefore, V̂ are still the leading K eigenvectors for Σ′, and thus

Col(V′) = Col(V̂).

Recall in Section 4 we discuss that the bias term has the following decomposition

D(V′,V) ≤ D(V̂,V) +D(V′, V̂). Lemma D.1 shows that as long as Σ′ and VV⊤ are not

too far apart, V′ and V̂ will share the same column space. In fact, Lemma D.4 in Section D.2

will show that the probability that Σ′ and V̂V̂⊤ are not sufficiently close converges to 0,

and D(V′,V) = D(V̂,V) with high probability. With the help of Lemma D.1, we present

the proof of the main error bound results in the following section.

D.2 Proof of Theorem 4.1

Recall the problem setting in Section 2. It is not hard to see that we can write Λ = P0Λ
0,

where Λ0 = diag(|λ1|, . . . , |λK |) and P0 = diag
(
[sgn(λk)]

K
k=1

)
. Then M = (VP0)Λ

0V⊤ is

the SVD of M.

We begin with bounding
(
E∥ṼṼ⊤ −VV⊤∥2F

)1/2
. Before delving into the detailed

proof, the following two lemmas provide some important properties of the random Gaussian
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matrix.

Lemma D.2. Let Ω ∈ Rd×p be a random matrix with i.i.d. standard Gaussian entries,

where p ≤ d. For a random variable, recall that we define the ψ1 norm to be ∥ · ∥ψ1 =

supp≥1(E| · |p)1/p/p. Then we have the following bound on the ψ1 norm of the matrix Ω/
√
p:

∥∥Ω/√p∥2∥ψ1 ≲
√
d/p. (D.23)

Lemma D.3. Let Ω ∈ RK×p denote a random matrix with i.i.d. Gaussian entries, where

p ≥ 2K. For any integer a such that 1 ≤ a ≤ (p−K + 1)/2, there exists a constant C > 0

such that

E
(
(σmin(Ω/

√
p))−a

)
≤ Ca. (D.24)

The following lemma shows that ∥Σ′ −VV⊤∥2 and ∥Σ′ − V̂V̂⊤∥2 are bounded by a

small constant with high probability.

Lemma D.4. If Assumption 1 holds and p ≥ max(2K,K + 3), there exists a constant

c0 > 0 such that for any ε > 0, we have

max
{
P
(
∥Σ′ −VV⊤∥2 ≥ ε

)
,P
(
∥Σ′ − V̂V̂⊤∥2 ≥ ε

)}
≲ exp

(
−c0

√
p

d

∆ε

r1(d)

)
.

The proof of Lemma D.2, Lemma D.3 and Lemma D.4 are deferred to Supplementary

Materials E. Now we can start with the proof. We first decompose the bias term into two

parts, (
E|D(Ṽ,V)|2

)1/2
≤
(
E|D(Ṽ,V′)|2

)1/2
︸ ︷︷ ︸

I

+
(
E|D(V′,V)|2

)1/2
︸ ︷︷ ︸

II

. (D.25)

Term I can be regarded as the variance term, whereas term II is the bias term. We will

consider the bias term first.
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D.2.1 Control of the Bias Term

We can see that term II can be further decomposed into two terms

(
E|D(V′,V)|2

)1/2 ≤ (E∥V′V′⊤ − V̂V̂⊤∥2F
)1/2

+
(
E∥V̂V̂⊤ −VV⊤∥2F

)1/2
. (D.26)

We can bound both terms separately. First note that ∥V′V′⊤ − V̂V̂⊤∥F ≤
√
2K∥V′V′⊤ −

V̂V̂⊤∥2 ≤
√
2K. Thus we have,

(
E∥V′V′⊤ − V̂V̂⊤∥2F

)1/2
≤
(
E∥V′V′⊤ − V̂V̂⊤∥2FI

{
∥Σ′ − V̂V̂⊤∥2 ≥ 1/2

})1/2
+
(
E∥V′V′⊤ − V̂V̂⊤∥2FI

{
∥Σ′ − V̂V̂⊤∥2 < 1/2

})1/2
≲ 0 +

√
K
(
P
(
∥Σ′ − V̂V̂⊤∥2 ≥ 1/2

))1/2
≲

√
K exp

(
−c0

4

√
p

d

∆

r1(d)

)
,

where the last but one inequality follows from Lemma D.1, and the last inequality is a result

of Lemma D.4. As for the second term on the RHS of (D.26), by Davis-Kahan’s Theorem

(Yu et al., 2015), we have

(
E∥V̂V̂⊤ −VV⊤∥2F

)1/2
≲

√
K

∆

(
E∥M̂−M∥22

)1/2
=

√
K

∆

(
E∥E∥22

)1/2
≤

√
K

∆
∥∥E∥2∥ψ1 ≲

√
K

∆
r1(d).

Therefore, the bound for the bias term is

II ≲
√
K exp

(
−c0

4

√
p

d

∆

r1(d)

)
+

√
K

∆
r1(d).
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D.2.2 Control of the Variance Term

Now we move on to control the variance term. Suppose that
∥∥Σ′ −VV⊤

∥∥
2
< 1/4. Then by

Weyl’s inequality (Franklin, 2012) we have that σK(Σ
′) > 1−1/4 = 3/4 and σK+1(Σ

′) < 1/4.

Thus by Davis-Kahan theorem (Yu et al., 2015)

(
E
(
∥ṼṼ⊤−V′V′⊤∥2FI

{∥∥Σ′ −VV⊤∥∥
2
< 1/4

}))1/2
≲

(
E

(
∥Σ̃−Σ′∥2F

(σK(Σ′)− σK+1(Σ′))2
I
{∥∥Σ′ −VV⊤∥∥

2
< 1/4

}))1/2

≲
(
E
(
∥Σ̃−Σ′∥2FI

{∥∥Σ′ −VV⊤∥∥
2
< 1/4

}))1/2
≤
(
E∥Σ̃−Σ′∥2F

)1/2
︸ ︷︷ ︸

III

.

We will bound term III later. Also similar as previously, note that ∥ṼṼ⊤−V′V′⊤∥F ≤
√
2K.

Thus by Lemma D.4,

(
E
(
∥ṼṼ⊤−V′V′⊤∥2FI

{∥∥Σ′ −VV⊤∥∥
2
≥ 1

4

}))1/2

≲
√
K

(
P
(∥∥Σ′ −VV⊤∥∥

2
≥ 1

4

))1/2

≤
√
K exp

(
−c0

8

√
p

d

∆

r1(d)

)
.

Therefore, we have

(
E∥ṼṼ⊤−V′V′⊤∥2F

)1/2
≲

√
K exp

(
−c0

8

√
p

d

∆

r1(d)

)
+
(
E∥Σ̃−Σ′∥2F

)1/2
︸ ︷︷ ︸

III

.
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Now we move on to bound term III.

(
E∥Σ̃−Σ′∥2F

)1/2
=

E

∥∥∥∥∥ 1L
L∑
ℓ=1

V̂(ℓ)V̂(ℓ)⊤ − E
(
V̂(1)V̂(1)⊤|M̂

)∥∥∥∥∥
2

F

1/2

=

(
E
(
E
(∥∥∥∥ 1L

L∑
ℓ=1

V̂(ℓ)V̂(ℓ)⊤ − E
(
V̂(1)V̂(1)⊤|M̂

)∥∥∥∥2
F

∣∣∣∣M̂)))1/2

=
1√
L

(
E
∥∥∥V̂(ℓ)V̂(ℓ)⊤ − E

(
V̂(1)V̂(1)⊤|M̂

)∥∥∥2
F

)1/2

≤ 1√
L

(
E
∥∥∥V̂(ℓ)V̂(ℓ)⊤ −VV⊤

∥∥∥2
F

)1/2

+
1√
L

(
E
∥∥VV⊤ −Σ′∥∥2

F

)1/2
.

where the last but one equality is due to the independence of estimators from different

sketches conditional on M̂. By Jensen’s inequality (Jensen, 1906), we have

1√
L

(
E
∥∥VV⊤ −Σ′∥∥2

F

)1/2
≤ 1√

L

(
E
∥∥∥V̂(ℓ)V̂(ℓ)⊤ −VV⊤

∥∥∥2
F

)1/2

.

Thus we have

(
E∥Σ̃−Σ′∥2F

)1/2
≲

1√
L

(
E
∥∥∥V̂(ℓ)V̂(ℓ)⊤ −VV⊤

∥∥∥2
F

)1/2

, (D.27)

Before bounding the RHS, let’s consider the matrix Y(ℓ) := VP0Λ
0V⊤Ω(ℓ). If Ω̃(ℓ) :=

V⊤Ω(ℓ) ∈ RK×p does not have full row rank, then the entries will be restricted to a linear

space with dimension less than K × p. Since Ω̃(ℓ) is a K × p standard Gaussian matrix,

the probability that Ω̃(ℓ) has full row rank is 1. And thus with probability 1, the matrix

Y(ℓ) is of rank K, and V and the top K left singular vectors of Y(ℓ)/
√
p span the same

column space. In other words, if we let Γ
(ℓ)
K be the left singular vectors of Y(ℓ)/

√
p, then

Γ
(ℓ)
K Γ

(ℓ)⊤
K = VV⊤.

Now consider the K-th singular value of Y(ℓ)/
√
p, we let UΩ̃DΩ̃V

⊤
Ω̃

be the SVD of
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Ω̃(ℓ)/
√
p, and we have

σK
(
Y(ℓ)/

√
p
)
= σK

(
VP0Λ

0Ω̃(ℓ)/
√
p
)
= σK

(
Λ0UΩ̃DΩ̃

)
= min

∥x∥2=1
∥Λ0UΩ̃DΩ̃x∥2

(i)

≥ σmin

(
Ω̃(ℓ)/

√
p
)

min
∥v1∥2=1

∥∥Λ0UΩ̃v1

∥∥
2

(ii)

≥ σmin

(
Ω̃(ℓ)/

√
p
)

min
∥v2∥2=1

∥∥Λ0v2

∥∥
2
≥ ∆σmin

(
Ω̃(ℓ)/

√
p
)
,

where v1 = DΩ̃x/∥DΩ̃x∥2, and v2 = UΩ̃v1. Inequality (i) follows because

∥DΩ̃x∥2 ≥ σmin

(
Ω̃(ℓ)/

√
p
)
∥x∥2 = σmin

(
Ω̃(ℓ)/

√
p
)
,

and inequality (ii) is because ∥v2∥2 = ∥v1∥2 = 1.

Now by Wedin’s Theorem (Wedin, 1972) we have the following bound on the RHS of

(D.27),

1√
L

(
E
∣∣D(V̂(ℓ),V)

∣∣2)1/2≲ √
K√
L

(
E
∥∥∥Ŷ(ℓ)/

√
p−Y(ℓ)/

√
p
∥∥∥2
2
/
(
∆σmin

(
Ω̃(ℓ)/

√
p
))2)1/2

≤
√
K

∆
√
L

(
E
∥∥∥Ŷ(ℓ)/

√
p−Y(ℓ)/

√
p
∥∥∥4
2

)1/4(
E
(
σmin

(
Ω̃(ℓ)/

√
p
))−4

)1/4

≲

√
K

∆
√
L
∥∥E∥2∥ψ1 · ∥∥Ω(ℓ)/

√
p∥2∥ψ1 ≲

√
Kd

∆2pL
∥∥E∥2∥ψ1 ≲

√
Kd

∆2pL
r1(d),

where the last but one inequality is due to Lemma D.3. Therefore, we have the final error

rate for the estimator Ṽ:

(
E∥ṼṼ⊤ −VV∥2F

)1/2
≲

√
K exp

(
−c0

8

√
p

d

∆

r1(d)

)
+

√
K

∆
r1(d)︸ ︷︷ ︸

bias

+

√
Kd

∆2pL
r1(d)︸ ︷︷ ︸

variance

.

Now consider the function g(x) := exp(a0
√

p
d
x)/(

√
dx2), where a0 > 0 is a fixed constant.

23



We have

d log g(x)

dx
= a0

√
p

d
− 2

x
> 0, for x ≥ 2

a0

√
d

p
.

Thus g(x) is increasing on x ≥ 2
√
d/p/a0, and if we take x ≥ C

√
d
p
log d for some large

enough constant C > 0, we have that g(x) ≥ 1. Then by plugging in x = ∆/r1(d) and

taking a0 = c0/8, under the condition that (log d)−1
√
p/d∆/r1(d) ≥ C for some large

enough constant C > 0, we have that

exp

(
−c0

8

√
p

d

∆

r1(d)

)
≲

1√
d

(
r1(d)

∆

)2

= o

(
r1(d)

∆

)
,

and the error rate simplifies to

(
E∥ṼṼ⊤ −VV∥2F

)1/2
≲

√
K

∆
r1(d)︸ ︷︷ ︸

bias

+

√
Kd

∆2pL
r1(d)︸ ︷︷ ︸

variance

.

Now we move on to bound
(
E∥ṼFṼF⊤ −VV⊤∥2F

)1/2
. Since∥ · ∥2q2 is convex, by Jensen’s

inequality (Jensen, 1906), under the condition that p ≥ max(2K, 8q +K − 1) we have that

there exists some constant η such that

E∥Σ̃−VV⊤∥2q2 ≤ 1

L

L∑
ℓ=1

E∥V̂(ℓ)V̂(ℓ)⊤ −VV⊤∥2q2 = E∥V̂(1)V̂(1)⊤ −VV⊤∥2q2

≤ E
(∥∥∥Ŷ(ℓ)/

√
p−Y(ℓ)/

√
p
∥∥∥2q
2

/(
∆σmin

(
Ω̃(ℓ)/

√
p
))2q )

≤ 1

∆2q

(
E
∥∥∥Ŷ(ℓ)/

√
p−Y(ℓ)/

√
p
∥∥∥4q
2

)1/2(
E
(
σmin

(
Ω̃(ℓ)/

√
p
))−4q

)1/2

≲

(
ηq2

√
d

∆2p
∥∥E∥2∥ψ1

)2q

.
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Thus by Markov’s inequality, we also have

P
(
∥Σ̃−VV⊤∥2 ≥

1

2

)
= P

(
∥Σ̃−VV⊤∥2q2 ≥ 1

22q

)
≤ 22qE

(
∥Σ̃−VV⊤∥2q2

)
≲

(
2ηq2

√
d

∆2p
∥∥E∥2∥ψ1

)2q

.

Since Σ̃ is the summation of positive semi-definite matrices by construction, Σ̃ is also positive

semi-definite. By Weyl’s inequality (Franklin, 2012), we know that σK(Σ̃) ≥ 1−∥Σ̃−VV⊤∥2

and σK+1(Σ̃) ≤ ∥Σ̃−VV⊤∥2.

Now if we denote the SVD of Σ̃q by ṼΛ̃q
KṼ

⊤ + Ṽ⊥Λ̃
q
⊥Ṽ

⊤
⊥, then with probability 1,

ṼΛ̃q
KṼ

⊤ΩF and Ṽ share the same column space. By the relationship σk(Σ̃
q) = σqk(Σ̃) for

k ∈ [d] and Davis-Kahan’s Theorem (Yu et al., 2015), we have

E
(
∥ṼFṼF⊤ − ṼṼ⊤∥2F |Σ̃

)
≲ E

(
K∥Σ̃qΩF − ṼΛ̃q

KṼ
⊤ΩF∥22/σ2

min(ṼΛ̃q
KṼ

⊤ΩF) |Σ̃
)

≲

( √
K

σqK(Σ̃)
∥Ṽ⊥Λ̃

q
⊥Ṽ

⊤
⊥∥2 · ∥∥ΩF/

√
p′∥2∥ψ1

)2

≲
Kd

p′
∥Σ̃−VV⊤∥2q2(

1− ∥Σ̃−VV⊤∥2
)2q .
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Therefore we have,

(
E∥ṼFṼF⊤ − ṼṼ⊤∥2F

)1/2
≲
(
E∥ṼFṼF⊤ − ṼṼ⊤∥2FI

{
∥Σ̃−VV⊤∥2 ≤ 1/2

})1/2
+
(
E∥ṼFṼF⊤ − ṼṼ⊤∥2FI

{
∥Σ̃−VV⊤∥2 > 1/2

})1/2
≲ 2q

√
Kd

p′

(
E∥Σ̃−VV⊤∥2q2

)1/2
+
√
K

{
P
(
∥Σ̃−VV⊤∥2 ≥

1

2

)}1/2

≲

√
Kd

p′

(
2ηq2

√
d

∆2p
∥∥E∥2∥ψ1

)q

+
√
K

(
2ηq2

√
d

∆2p
∥∥E∥2∥ψ1

)q

≲

√
Kd

p′

(
2ηq2

√
d

∆2p
∥∥E∥2∥ψ1

)q

,

where the last but one inequality is by Markov’s inequality, i.e.,

P
(
∥Σ̃−VV⊤∥2 ≥

1

2

)
≤ 22qE∥Σ̃−VV⊤∥2q2 ≲

(
2ηq2

√
d

∆2p
∥∥E∥2∥ψ1

)2q

.

Thus by previous results and triangle inequality we have

(
E
∣∣D(ṼF,V)

∣∣2)1/2 ≲ (E∥ṼFṼF⊤ − ṼṼ⊤∥2F
)1/2

+
(
E∥ṼṼ⊤ −VV⊤∥2F

)1/2
≲

√
K

∆
r1(d)+

√
Kd

∆2pL
r1(d)+

√
Kd

p′

(
2ηq2

√
d

∆2p
r1(d)

)q

.

D.3 Proof of Corollary 4.2 and Corollary A.1

The case-specific error rates can be calculated by computing r1(d) and studying the proper

value of q for each example.

• Example 1: we know that E = Σ̂ − Σ + (σ2 − σ̂2)I. Now consider the K ′ × K ′

submatrix of Σ corresponding to the the index set S, which we denote by ΣS = Σ[S,S]. We

have ΣS = σ2IK′ + (V)[S,:]Λ(V)⊤[S,:], where (V)[S,:] is the submatrix of V composed of the
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rows in S. Then since (V)[S,:]Λ(V)⊤[S,:] ⪰ 0 and rank
(
(V)[S,:]Λ(V)⊤[S,:]

)
≤ K, we know that

σmin(ΣS) = σ2. By Weyl’s inequality (Franklin, 2012), we know |σ2 − σ̂2| ≤ ∥Σ̂S −ΣS∥2 ≤

∥Σ̂−Σ∥2. Thus we have ∥E∥2 ≤ ∥Σ̂−Σ∥2 + |σ2 − σ̂2| ≤ 2∥Σ̂−Σ∥2. Then by Lemma 3

in Fan et al. (2019), we have that there exists some constant c ≥ 1 such that for any t ≥ 0,

we have

P(∥E∥2 ≥ t) ≤ P(2∥Σ̂−Σ∥2 ≥ t) ≤ exp(− t

2c(λ1 + σ2)
√
r/n

),

where r = tr(Σ)/∥Σ∥2 is the effective rank of Σ. Thus we can see that ∥E∥2 is sub-

exponential with

∥∥E∥2∥ψ1 ≲ ∥∥Σ̂−Σ∥2∥ψ1 ≲ (λ1 + σ2)

√
r

n
,

and hence we can take r1(d) = (λ1 + σ2)
√

r
n
. When n ≥ C(dr/p)κ21(log d)

4, by Theorem 4.1

we have

(
E|D(ṼF,V)|2

)1/2
≲ κ1

√
Kr

n
+ κ1

√
Kdr

npL
+

√
Kd

p′

(
ηq2κ1

√
dr

np

)q

,

where the third term will be dominated by the first bias term when taking q = log d, and

hence (3) holds.

• Example 2: From the problem setting we know that we can represent Wj as Wj =∑K
k=1 I{kj = k}θk +Zj, where Zj

i.i.d∼ N (0, In), j ∈ [d]. Denote Z = (Z1, . . . ,Zd), then it

can be seen that E(X⊤X) = E(X)⊤E(X) + E(Z⊤Z) = FΘ⊤ΘF⊤ + nId, and we can write

E = X⊤X− E(X⊤X) = FΘ⊤Z+ Z⊤ΘF⊤ + Z⊤Z− nId,

then we know that ∥E∥2 ≤ 2∥FΘ⊤Z∥2 +n∥Z⊤Z/n− Id∥2. We consider ∥FΘ⊤Z∥2 first. We
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know that Z̃ := Θ⊤Z = Θ⊤(Z1, . . . ,Zd) = (Z̃1, . . . , Z̃d) ∈ RK×d, where Z̃j
i.i.d∼ N (0,Θ⊤Θ).

Under the given conditions we know that ∥Θ⊤Θ∥2 ≤ ∆2
0. Since (Θ⊤Θ)−1/2Z̃ is a K × d

i.i.d. Gaussian matrix, by Lemma D.2, we have that

∥∥Z̃∥2∥ψ1 ≲ ∥(Θ⊤Θ)1/2∥2∥∥(Θ⊤Θ)−1/2Z̃∥2∥ψ1 ≲ ∆0

√
d.

As for ∥Z⊤Z/n − Id∥2, when n > d, by Lemma 3 in Fan et al. (2019) we know that

∥∥Z⊤Z/n− Id∥2∥ψ1 ≲
√
d/n, and hence in summary we have

∥∥E∥2∥ψ1 ≲ ∥F∥2∥∥Z̃∥2∥ψ1 + n∥∥Z⊤Z/n− Id∥2∥ψ1 ≲ ∆0d/
√
K +

√
nd,

and we can take r1(d) = ∆0d/
√
K +

√
nd. We know that ∆ = σmin(FΘ

⊤ΘF⊤) ≳ d∆2
0/K,

and thus under the condition that ∆2
0 ≥ CK(log d)2

(
d(log d)2/p ∨

√
n/p
)
for some large

enough constant C > 0, by Theorem 4.1 we have that

(
E|D(ṼF,V)|2

)1/2
≲

(
K

∆0

+
K

∆2
0

√
Kn

d

)
+

√
d

pL

(
K

∆0

+
K

∆2
0

√
Kn

d

)

+

√
Kd

p′

(
ηq2

(√
dK

p∆2
0

+
K

∆2
0

√
n

p

))q

.

Now for the third term to be dominated by the bias term, we can take

q = log d ≥
log
(
d/
√
pp′
)

log log d
+ 1 ≥

log
(
d/
√
pp′
)

log
(√

p
d

∆
r1(d)

) + 1,

and hence (4) holds.

Remark 13. In fact we can derive a slightly sharper tail bound for the convergence rate of

∥E∥2. More specifically, for any t ≥ ∆0

√
d, by Lemma 3 in Fan et al. (2019) there exists
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some constant c ≥ 1 such that

P
(
∥Z̃∥2 ≥ t

)
= P

(
∥Z̃Z̃⊤∥2 ≥ t2

)
= P

(
d∥Z̃Z̃⊤/d−Θ⊤Θ+Θ⊤Θ∥2 ≥ t2

)
≤ P

(
d∥Z̃Z̃⊤/d−Θ⊤Θ∥2 ≥ t2 − d∥Θ⊤Θ∥2

)
≤ P

(
∥Z̃Z̃⊤/d−Θ⊤Θ∥2 ≥ t2/d−∆2

0

)
≤ exp

(
− t2/d−∆2

0

c∆2
0

√
K/d

)
,

which indicates that ∥Z̃∥2 ≲ ∆0

√
d with probability at least 1 − d−10. Hence under the

condition that
√
K/d log d = O(1), with probability at least 1 − O(d−10) we have that

∥E∥2 ≲ d∆0/
√
K +

√
dn log d, which will be used as the statistical rate of ∥E∥2 in later

proofs.

• Example 3: Under the problem settings we know that E = M̂−M = X− EX. For

the eigenvalues of M, under the given conditions we know that

σK(M) ≳ θσK(P)σ2
K(Π) ≳ dθ/K, σ1(M) ≲ θσ1(P)σ2

1(Π) ≲ Kdθ∥Π∥22,∞ ≤ Kdθ,

where the last inequality is because for i ∈ [d], we have that

∥πi∥2 =
( K∑
k=1

πi(k)
2
)1/2 ≤ ( K∑

k=1

πi(k)
)1/2

= 1 and ∥Π∥2,∞ ≤ 1.

Thus we know that ∆ ≳ dθ/K.

We then bound the entries of M. We know Mij = θiθj
∑K

k=1

∑K
k′=1 πi(k)πj(k

′)Pkk′ , and
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thus we have that

Mij ≥ θiθj

K∑
k=1

K∑
k′=1

πi(k)πj(k
′)min

kk′
(Pkk′)

= θiθj min
kk′

(Pkk′)
K∑
k=1

K∑
k′=1

πi(k)πj(k
′) = θiθj min

kk′
(Pkk′);

Mij ≤ θiθj

K∑
k=1

K∑
k′=1

πi(k)πj(k
′)max

kk′
(Pkk′)

= θiθj max
kk′

(Pkk′)
K∑
k=1

K∑
k′=1

πi(k)πj(k
′) = θiθj max

kk′
(Pkk′).

Thus we can see that Mij ≍ θ, maxij E(E2
ij) ≲ θ and maxi

∑
j E(E2

ij) ≲ dθ. By Theorem

3.1.4 in Chen et al. (2021), we know that there exists some constant c > 0 such that for any

t > 0,

P{∥E∥2 ≥ 4
√
dθ + t} ≤ d exp

(
−t2/c

)
.

Also, since for t ≥ 5
√
dθ, there exists a constant c > 0 such that P(∥E∥2 ≥ t) ≤

exp(−t2/c), we have that ∥∥E∥2∥ψ1 ≲
√
dθ, and hence we can take r1(d) =

√
dθ. Be-

sides,
√
p/d∆/r1(d) =

√
pθ/K ≳ dϵ/2, and hence by Theorem 4.1 we have

(
E|D(ṼF,V)|2

)1/2
≲ K

√
K

dθ
+K

√
K

pLθ
+

√
Kd

p′

(
ηq2

K√
pθ

)q
.

When

q = log d≫ 1 + 2ϵ−1 >
log
(√

d/p′
√
dθ/K

)
log
(√

p/d
√
dθ/K

) ,
the third term is negligible and (A.16) holds.

Remark 14. It’s worth noting that here in Example 3 ∥E∥2 converges faster than sub-

Exponential random variables and ∥E∥2 ≲
√
dθ with probability at least 1− d−10, which

we will take into account in later proofs.
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Remark 15. Under the case where no self-loops are present, E is replaced by E′ = E −

diag(X) = E− diag(E)− diag(M). With similar arguments we can show that

∥∥E′∥2∥ψ1 ≲ ∥∥E− diag(E)∥2∥ψ1 + ∥ diag(M)∥2 ≲
√
dθ + θ ≲

√
dθ,

and ∥E′∥2 ≲ ∥E− diag(E)∥2 + ∥ diag(M)∥2 ≲
√
dθ + θ ≲

√
dθ,

with probability at least 1− d−10, and hence (A.16) also holds for the no-self-loops case.

• Example 4: We define Ē = [εij], then M̂ = (1/θ̂)PS(M + Ē), where PS is the

projection onto the subspace of matrices with non-zero entries only in S. Since M̂ and

M̂′ := (θ̂/θ)M̂ = (1/θ)PS(M+ Ē) differ only by a positive factor, M̂ and M̂′ share exactly

the same sequence of eigenvectors and ṼF can be viewed as the output by applying FADI to

M̂′. Thus we will establish the results for M̂′ instead, and abuse the notation by denoting

E := M̂′ −M. We first study the order of ∥M∥max, where ∥M∥max = maxi,j |Mij| denotes

the matrix max norm. When ∥V∥2,∞ ≤
√
µK/d for some rate µ ≥ 1 (that may change

with d), for any i, j ∈ [d], we have that

|Mij| = |e⊤i VΛ(e⊤j V)⊤| ≤ ∥Λ∥2∥e⊤i V∥2∥e⊤j V∥2 ≤ |λ1|∥V∥22,∞ ≤ |λ1|µK
d

.

Thus we have ∥M∥max = O(|λ1|µK/d). Also, we can write E = E1 + E2, where (E1)ij =

Mij(δij − θ)/θ, (E2)ij = εijδij/θ, and for i ≤ j

Var
(
(E1)ij

)
= M2

ij(1− θ)/θ ≤ ∥M∥2max/θ = O
((λ1µK)2

d2θ

)
, Var

(
(E2)ij

)
= σ2/θ.

It is not hard to see that Cov((E1)ij, (E2)ij) = 0. Also, by the setting of Example 4 we have

that |(E1)ij| ≤ ∥M∥max/θ = O( |λ1|µK
dθ

), and there exists a constant C > 0 independent of d
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such that |(E2)ij| ≤ Cσ log d/θ for all i ≤ j. Then we will study ∥E1∥2 and ∥E2∥2 separately.

We denote ν1 = d∥M∥2max/θ and ν2 = dσ2/θ. Under the condition that θ ≥ d−1/2+ϵ for some

constant ϵ > 0, by Theorem 3.1.4 in Chen et al. (2021), there exists constant c > 0 such

that for any t ≥ 4 we have

P
(∥E1∥2
2
√
ν1

≥ t
)
≤ P

(
∥E1∥2/

√
ν1 ≥ 4 + t

)
= P

(
∥E1∥2 ≥ 4

√
ν1 + t

√
ν1
)

≤ d exp
(
− t2d∥M∥2max/θ

c∥M∥2max/θ
2

)
= exp(−dθt2/c+ log d)

≤ exp(−dθt
2

2c
) ≤ exp(−t2).

Very similarly for ∥E2∥2, there exists c′ > 0 such that for any t ≥ 4, we have

P
(∥E2∥2
2
√
ν2

≥ t
)
≤ P

(
∥E2∥2 ≥ 4

√
ν2 + t

√
ν2
)
≤ d exp

(
− t2dσ2/θ

c′σ2(log d)2/θ2

)
= exp

(
− dθt2

c′(log d)2
+ log d

)
≤ exp

(
− dθt2

2c′(log d)2

)
≤ exp(−t2).

Thus we can see that

∥∥E∥2∥ψ1 ≤ ∥∥E1∥2∥ψ1 + ∥∥E2∥2∥ψ1 ≲
√
ν1 +

√
ν2 ≲

|λ1|µK√
dθ

+

√
dσ2

θ
.

By Theorem 4.1, under the condition that p = Ω(
√
d), σ/∆ ≪ (log d)−2d−1

√
pθ and

κ2µK ≪ d1/4, it holds that

(
E|D(ṼF,V)|22

)1/2
≲

√
K

(
κ2µK√
dθ

+

√
dσ2

∆2θ

)
+K

√
d

pL

(
κ2µK√
dθ

+

√
dσ2

∆2θ

)

+

√
Kd

p′

(
ηq2

(
κ2µK√
pθ

+

√
d2σ2

p∆2θ

))q

.

Furthermore, the third term vanishes when q = log d and (A.17) holds.
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Remark 16. Here we can also obtain a statistical rate sharper than subexponential rate

for ∥E∥2 that would be used in later proofs. Combining the above results for any t ≥

16max(
√
ν1,

√
ν2) we have

P
(
∥E∥2 ≥ t

)
≤ P

(
∥E1∥2 ≥ t/2

)
+ P

(
∥E2∥2 ≥ t/2

)
≤ exp(− dθt2

32cν1
) + exp

(
− dθt2

32c′(log d)2ν2

)
= exp

(
− d2θ2t2

C1(λ1µK)2

)
+ exp

(
− θ2t2

C2(log d)2σ2

)
,

where C1, C2 > 0 are constants. Thus ∥E∥2 ≲ |λ1|µK√
dθ

+
√

dσ2

θ
with probability at least

1− d−10.

D.4 Proof of Theorem 4.3

We first bound the recovery probability of K̂(ℓ) for each ℓ ∈ [L]. Recall that Ŷ(ℓ)/
√
p =

VΛΩ̃(ℓ)/
√
p+ EΩ(ℓ)/

√
p, where Ω̃(ℓ) = V⊤Ω(ℓ).

For the residual term EΩ(ℓ)/
√
p, by Lemma 3 in Fan et al. (2019), under the condition

that
√
p/d log d = o(1), with probability at least 1 − d−10 we have ∥Ω(ℓ)/

√
p∥2 ≤ 2

√
d
p
.

Denote by AE the event
{
∥E∥2 ≤ 10c−1

e r1(d) log d
}
, where ce > 0 is the constant defined in

Remark 2. Then conditional on AE, we have that ∥EΩ(ℓ)/
√
p∥2 ≤ 20c−1

e

√
d
p
r1(d) log d with

probability at least 1 − d−10 for each ℓ ∈ [L]. Recall η0 = 480c−1
e

√
d

∆2p
r1(d) log d. From

Proposition 10.4 in Halko et al. (2011), we know that when p ≥ 2K,

P
(
σmin

(
Ω̃(ℓ)/

√
p
)
≤ 1

6

√
η0

)
≤ P

(
σmin

(
Ω̃(ℓ)/

√
p
)
≤ p−K + 1

ep

√
η0

)
≤ η

p−K+1
2

0 .

Therefore, with probability at least 1− η
(p−K+1)/2
0 ,

σmin

(
VΛΩ̃(ℓ)/

√
p
)
≥ ∆σmin

(
Ω̃(ℓ)/

√
p
)
> ∆

√
η0/6 ≥ 2µ0.
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By Weyl’s inequality (Franklin, 2012), we know that conditional on AE, with probability

at least 1−d−10, σK+1(Ŷ
(ℓ)/

√
p) ≤ ∥EΩ(ℓ)/

√
p∥2 ≤ 20c−1

e

√
d
p
r1(d) = ∆η0/24 ≤ µ0 for large

enough d, which indicates that σk+1(Ŷ
(ℓ))−σp(Ŷ(ℓ)) <

√
pµ0 for any k ≥ K. For k ≤ K−1,

under the same event we have

σk+1(Ŷ
(ℓ))− σp(Ŷ

(ℓ)) ≥ σK(Ŷ
(ℓ))− σp(Ŷ

(ℓ)) ≥ σmin

(
VΛΩ̃(ℓ)

)
− 2∥EΩ(ℓ)∥2

>
√
p(∆

√
η0/6−∆η0/12) ≥

√
p(∆

√
η0/6−∆

√
η0/12) = ∆

√
pη0/12 ≥ √

pµ0.

Then we have

P
(
K̂(ℓ) = K

∣∣AE

)
≥ P

(
σK
(
Ŷ(ℓ)

)
− σp

(
Ŷ(ℓ)

)
>

√
pµ0, σK+1

(
Ŷ(ℓ)

)
− σp

(
Ŷ(ℓ)

)
≤ √

pµ0

∣∣∣AE

)
≥ P

(
σmin

(
VΛΩ̃(ℓ)/

√
p
)
≥ ∆

√
η0/6, ∥EΩ(ℓ)/

√
p∥2 ≤ ∆η0/24

∣∣∣AE

)
≥ 1− d−10 − η

p−K+1
2

0 .

We know that conditional on E, I{K̂(ℓ) ̸= K | AE} are i.i.d. Bernoulli variables with

expectation pK := P(K̂(ℓ) ̸= K | AE) ≤ d−10 + η
p−K+1

2
0 ≤ 1/4 and variance pK(1− pK) ≤ pK .

Since the estimators {K̂(ℓ)}Lℓ=1 are all integers, we know that if K̂ ̸= K, at least half of

{K̂(ℓ)}Lℓ=1 are not equal to K. Then by Hoeffding’s inequality, we have

P(K̂ ̸=K) ≤ P

(
L∑
ℓ=1

I
{
K̂(ℓ) ̸= K

}
−pKL≥

L

4

)
=EE

(
P
( L∑
ℓ=1

I
{
K̂(ℓ) ̸=K

}
−pKL ≥ L

4

∣∣E))

≤ P(AE) exp
{
−(L/4)2/(2LpK)

}
+ 1− P(AE)

≤ exp

{
−L
/(

32d−10 + 32η
p−K+1

2
0

)}
+O(d−10).

We know that 32d−10 ≤ (log d)−1 for d ≥ 2, and under the condition that η0 ≤ (32 log d)−
2

p−K+1

we have P(K̂ ̸= K) ≤ exp(−L log d/2) +O(d−10) ≲ d−(L∧20)/2.
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D.5 Proof of Corollary 4.4 and Corollary A.2

• Example 1: From the proof of Corollary 4.2 we know that we can take r1(d) =

(λ1 + σ2)
√

r
n
log d. Then by plugging in each term we know that under the condition that

(λ1 + σ2)
(
d(np)−1/2 log d

)1/4
= o(1) and ∆ ≫

(
σ−2(np)−1/2d log d

)1/3
, we have ∆η0/24 ≪

µ0 ≪ ∆
√
η0/12. Besides, under the condition that κ1

√
dr/(np)(log d)2 = o(1), we also

have η0 ≤ (32 log d)−
2

p−K+1 . Thus the conditions for Theorem 4.3 are satisfied and we have

K̂ = K with probaility at least 1−O(d−(L∧20)/2).

• Example 2: We know from the proof of Corollary 4.2 and Remark 13 that ∆ ≳ d∆2
0/K

and ∥E∥2 ≲ d∆0/
√
K +

√
dn log d with probability at least 1 − d−10. Thus we have

η0 ≍
√
d/(∆2p)

(
d∆0/

√
K +

√
dn log d

)
. Under the condition that

√
K(log d)3 (n/p)1/4 ≪

∆0 ≪
√
nK/d log d, we know that d∆0/

√
K +

√
dn log d ≲

√
dn log d, ∆η0 ≍ d

√
n/p log d

and
√
η0 log d = o(1), and thus ∆η0/24 ≪ µ0 ≪ ∆

√
η0/12. By Theorem 4.3 the claim

follows.

• Example 3: We know from the proof of Corollary A.1 that ∆ ≳ dθ/K. Also from

Remark 14 we know that ∥E∥2 ≲
√
dθ with probability at least 1− d−10, and thus we have

η0 ≍
√
d/(∆2p)

√
dθ ≲ K/

√
pθ ≍ 1/

√
dϵ−1/2p, ∆η0 ≍ d

√
θ/p and ∆

√
η0 ≳ dθ3/4p−1/4K−1/2.

Also recall from the proof of Corollary A.1 that E(M̂ij) = Mij ≍ θ for any i, j ∈ [d], and

hence d−2
∑

i≤j Mij ≍ θ. By Hoeffding’s inequality (Hoeffding, 1994), we have that

P

(
2

d(d− 1)

∣∣∣∣∣∑
i≤j

M̂ij −
∑
i≤j

Mij

∣∣∣∣∣ ≥
√
11 log d

d

)
≲ exp

(
−11d(d− 1) log d/d2

)
≲ d−10.

Thus we can see with probability at least 1−O(d−10), |θ̂−d−2
∑

i≤j Mij| ≲
√
log d
d

and θ̂ ≍ θ,

and in turn ∆η0/24 ≪ µ0 ≪ ∆
√
η0/12. Thus by Theorem 4.3 the claim follows.

• Example 4: By Hoeffding’s inequality (Hoeffding, 1994), with probability at least 1−d−10
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we have that |θ̂ − θ|/θ̂ ≤ C
√
log d/dθ. As for σ̂2

0, we have

σ̂2
0 =

1

|S|
∑

(i,j)∈S

(θ̂M̂ij)
2 =

1

|S|

∑
i≤j

δijM
2
ij + 2

∑
(i,j)∈S

Mijεij +
∑

(i,j)∈S

ε2ij

 .

We consider the latter two terms first. We know that |εij| ≤ Cσ log d for some constant

C > 0 and |Mij| ≤ |λ1|µK/d, for any i ≤ j. Denote by σ̃ = (|λ1|µK/d) ∨ σ, then we have

Var(Mijεij) ≤ (
|λ1|µK
d

)2σ2 ≤ σ̃4, |Mijεij| ≤
|λ1|µK
d

Cσ log d ≤ Cσ̃2 log d, ∀i ≤ j,

and

Var(ε2ij) ≤ C4σ4(log d)4 ≤ C4σ̃4(log d)4, |ε2ij| ≤ C2σ2(log d)2 ≤ C2σ̃2(log d)2, ∀i ≤ j.

Thus by Bernstein inequality (Bernstein, 1924), conditional on S, with probability at least

1− 2d−10 we have that there exists a constant C ′ > 0 independent of S such that

∣∣∣∣∣∣ 1|S|
∑

(i,j)∈S

Mijεij

∣∣∣∣∣∣ ≤ C ′

(
σ̃2
√
log d√
|S|

+
σ̃2(log d)2

|S|

)
, (D.28)

and ∣∣∣∣∣∣ 1|S|
∑

(i,j)∈S

ε2ij − σ2

∣∣∣∣∣∣ ≤ C ′

(
σ̃2(log d)5/2√

|S|
+
σ̃2(log d)3

|S|

)
. (D.29)

Now we consider the first term. Since δij’s are i.i.d. Bernoulli random variables with

expectation θ, we have

Var(M2
ijδij) ≤ θσ̃4, |M2

ijδij| ≤ σ̃2, i ≤ j.

Also, we know that
∑

i≤j M
2
ij ≥ ∥M∥2F/2 ≥ K∆2/2 and

∑
i≤j M

2
ij ≤ ∥M∥2F ≤ Kλ21, and
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hence K∆2θ/2 ≤ E
(∑

i≤j δijM
2
ij

)
≤ Kλ21θ. Then by Bernstein inequality (Bernstein, 1924)

with probability at least 1− d−10, it holds that

∣∣∣∣∣(∑
i≤j

δijM
2
ij

)
− E

(∑
i≤j

δijM
2
ij

)∣∣∣∣∣ ≲ d2
(
σ̃2
√
θ log d

d
+
σ̃2 log d

d2

)
= σ̃2(d

√
θ log d+ log d).

(D.30)

Thus combining (D.28), (D.29) and (D.30) with the fact that |S| ≍ d2θ with probability

at least 1 − d−10, under the condition that κ22µ
2K ≪ (log d)2, with probability at least

1−O(d−10) we have

σ̃ ≪

(
∆
√
K log d

d
∨ σ

)
+ o(σ̃) ≲ σ̂0 log d ≲

(
|λ1|

√
K log d

d
∨ σ

)
+ o(σ̃) ≲ σ̃ log d.

From the proof of Corollary A.1 and Remark 16, we know that with probability at least

1− d−10,

∥M̂−M∥2 ≲

∥∥∥∥∥ θ̂θM̂− M̂

∥∥∥∥∥
2

+

∥∥∥∥∥ θ̂θM̂−M

∥∥∥∥∥
2

≲
|λ1|

√
log d

dθ
+

|λ1|µK√
dθ

+

√
dσ2

θ
≲

√
dσ̃2

θ
,

and hence η0 ≍ dσ̃(∆
√
pθ)−1 and ∆η0 ≍ dσ̃/

√
pθ.

Under the condition that (pθ)−1/4
√
dσ/∆ log d = o(1), with probability at least 1 −

O(d−10) we have ∆η0/24 ≪ µ0 ≪ ∆
√
η0/12. Thus by Theorem 4.3 the claim follows.

D.6 Proof of Theorem 4.8

We first decompose ṼFH − V = ṼFH − ṼH0 + ṼH0 − V, and we consider the term

ṼH0 −V first.

By Lemma 8 in Fan et al. (2019), we have that ∥ṼH0 − V − P⊥(Σ̃ − VV⊤)V∥2 ≲

∥Σ̃−VV⊤∥2∥P⊥(Σ̃−VV⊤)V∥2. Note that in Lemma 8 of Fan et al. (2019), the norm
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is Frobenius norm rather than operator norm, and the modification from Frobenius norm

to operator norm is trivial and hence omitted. We first study the leading term P⊥(Σ̃ −

VV⊤)V = 1
L

∑L
ℓ=1 P⊥(V̂

(ℓ)V̂(ℓ)⊤ −VV⊤)V.

For a given ℓ ∈ [L], we know that V̂(ℓ) is the top K left singular vectors of Ŷ(ℓ) =

M̂Ω(ℓ)/
√
p = VΛV⊤Ω(ℓ)/

√
p+ EΩ(ℓ)/

√
p = Y(ℓ) + E (ℓ), where

Y(ℓ) = VΛV⊤Ω(ℓ)/
√
p and E (ℓ) = EΩ(ℓ)/

√
p.

By the “symmetric dilation” trick, we denote

S(Ŷ(ℓ)) =

 0 Ŷ(ℓ)

Ŷ(ℓ)⊤ 0

 , S(Y(ℓ)) =

 0 Y(ℓ)

Y(ℓ)⊤ 0

 ,

and S(E (ℓ)) = S(Ŷ(ℓ))− S(Y(ℓ)) =

 0 EΩ(ℓ)/
√
p

Ω(ℓ)⊤E/
√
p 0

 .

We let Γ
(ℓ)
K Λ

(ℓ)
K U

(ℓ)⊤
K be the SVD of Y(ℓ), and we know that with probability 1 we have

Γ
(ℓ)
K = VOΩ(ℓ) , where OΩ(ℓ) is an orthonormal matrix depending on Ω(ℓ). It is not hard to

verify that the eigen-decomposition of S(Y(ℓ)) is:

S(Y(ℓ)) =
1√
2

Γ
(ℓ)
K Γ

(ℓ)
K

U
(ℓ)
K −U

(ℓ)
K

 ·

Λ
(ℓ)
K 0

0 −Λ
(ℓ)
K

 · 1√
2

Γ
(ℓ)
K Γ

(ℓ)
K

U
(ℓ)
K −U

(ℓ)
K


⊤

,

where Λ
(ℓ)
K = diag(λ

(ℓ)
1 , . . . , λ

(ℓ)
K ). First we study the eigengap σmin(Λ

(ℓ)
K ) = λ

(ℓ)
K . Recall

Ω̃(ℓ) = V⊤Ω(ℓ) ∈ RK×p, and it can be seen that the entries of Ω̃(ℓ) are i.i.d. standard

Gaussian. By Lemma 3 in Fan et al. (2019), we know that with probability at least 1−d−10,

we have that ∥Ω̃(ℓ)Ω̃(ℓ)⊤/p− IK∥2 ≲
√

K
p
log d, and thus σmin(Ω̃

(ℓ)/
√
p) ≥ 1−O(

√
K
p
log d)
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with probability at least 1− d−10. Thus under the condition that
√

K
p
log d = o(1), under

the same high probability event we have that σmin(Λ
(ℓ)
K ) ≥ ∆/2. Now we let Û

(ℓ)
K be the

top K right singular vectors of Ŷ(ℓ). For j ∈ [K] we define

G
(ℓ)
j =

1

2

 Γ
(ℓ)
K

−U
(ℓ)
K

(−Λ
(ℓ)
K −λ(ℓ)j IK)

−1

 Γ
(ℓ)
K

−U
(ℓ)
K


⊤

− 1

λ
(ℓ)
j

{
IK−

1

2

Γ
(ℓ)
K Γ

(ℓ)
K

U
(ℓ)
K −U

(ℓ)
K


Γ

(ℓ)
K Γ

(ℓ)
K

U
(ℓ)
K −U

(ℓ)
K


⊤}
.

Then we have ∥G(ℓ)
j ∥2 ≤ 1/λ

(ℓ)
K ≤ 2/∆ with probability at least 1− d−10. Correspondingly

we define the linear mapping

f : R(d+p)×K → R(d+p)×K , (w1, · · · ,wK) 7→
(
−G

(ℓ)
1 w1, · · · ,−G

(ℓ)
K wK

)
,

and denote Γ̃
(ℓ)
K =

Γ
(ℓ)
K

U
(ℓ)
K

. By Lemma 8 in Fan et al. (2019), under the condition that

∥S(E (ℓ))∥2/∆ = o(1) we have

∥∥∥∥
V̂(ℓ)

Û
(ℓ)
K

 (V̂(ℓ)⊤, Û
(ℓ)⊤
K )− Γ̃

(ℓ)
K Γ̃

(ℓ)⊤
K − f

(
S(E (ℓ))Γ̃

(ℓ)
K

)
Γ̃

(ℓ)⊤
K − Γ̃

(ℓ)
K f
(
S(E (ℓ))Γ̃

(ℓ)
K

)⊤∥∥∥∥
2

≤
∥∥∥∥
V̂(ℓ)V̂(ℓ)⊤ − Γ

(ℓ)
K Γ

(ℓ)⊤
K V̂(ℓ)Û

(ℓ)⊤
K − Γ

(ℓ)
K U

(ℓ)⊤
K

Û
(ℓ)
K V̂(ℓ)⊤ −U

(ℓ)
K Γ

(ℓ)⊤
K Û

(ℓ)
K Û

(ℓ)⊤
K −U

(ℓ)
K U

(ℓ)⊤
K


− f

(
S(E (ℓ))Γ̃

(ℓ)
K

)
Γ̃

(ℓ)⊤
K − Γ̃

(ℓ)
K f
(
S(E (ℓ))Γ̃

(ℓ)
K

)⊤∥∥∥∥
2

≲ ∥S(E (ℓ))∥22/∆2.
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By taking the upper left block of the matrix, we have

∥∥V̂(ℓ)V̂(ℓ)⊤ − Γ
(ℓ)
K Γ

(ℓ)⊤
K − f

(
S(E (ℓ))Γ̃

(ℓ)
K

)
[1:d,:]

Γ
(ℓ)⊤
K − Γ

(ℓ)
K f
(
S(E (ℓ))Γ̃

(ℓ)
K

)⊤
[1:d,:]

∥∥
2

=
∥∥V̂(ℓ)V̂(ℓ)⊤ −VV⊤ − f

(
S(E (ℓ))Γ̃

(ℓ)
K

)
[1:d,:]

Γ
(ℓ)⊤
K − Γ

(ℓ)
K f
(
S(E (ℓ))Γ̃

(ℓ)
K

)⊤
[1:d,:]

∥∥
2

≲ ∥S(E (ℓ))∥22/∆2.

Now for j ∈ [K], we study P⊥(G
(ℓ)
j )[1:d,:]. Since Γ

(ℓ)
K = VOΩ(ℓ) , we have P⊥Γ

(ℓ)
K = 0.

Therefore we have,

P⊥Γ
(ℓ)
K (−Λ

(ℓ)
K − λ

(ℓ)
j IK)

−1

 Γ
(ℓ)
K

−U
(ℓ)
K


⊤

= 0, and

P⊥

{
Id+p −

1

2

Γ
(ℓ)
K Γ

(ℓ)
K

U
(ℓ)
K −U

(ℓ)
K


Γ

(ℓ)
K Γ

(ℓ)
K

U
(ℓ)
K −U

(ℓ)
K


⊤}

[1:d,:]

= (P⊥,0)−
1

2
P⊥Γ

(ℓ)
K (Id, Id)

Γ
(ℓ)
K Γ

(ℓ)
K

U
(ℓ)
K −U

(ℓ)
K


⊤

= (P⊥,0) + 0 = (P⊥,0),

and as a result we have

P⊥(Gj)[1:d,:] =
1

2
· 0− 1

λ
(ℓ)
j

{(P⊥,0)− 0} = − 1

λ
(ℓ)
j

(P⊥,0).
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Thus in turn,

P⊥

(
f
(
S(E (ℓ))Γ̃

(ℓ)
K

)
[1:d,:]

Γ
(ℓ)⊤
K + Γ

(ℓ)
K f
(
S(E (ℓ))Γ̃

(ℓ)
K

)⊤
[1:d,:]

)
= P⊥f

(
S(E (ℓ))Γ̃

(ℓ)
K

)
[1:d,:]

Γ
(ℓ)⊤
K

= (P⊥,0)

 0 EΩ(ℓ)/
√
p

Ω(ℓ)⊤E/
√
p 0


Γ

(ℓ)
K

U
(ℓ)
K

 (Λ
(ℓ)
K )−1Γ

(ℓ)⊤
K

= P⊥E(Ω
(ℓ)/

√
p)U

(ℓ)
K (Λ

(ℓ)
K )−1Γ

(ℓ)⊤
K = P⊥E(Ω

(ℓ)/
√
p)(Y(ℓ))†.

For a given ℓ ∈ [L], under the condition that
√
p/d log d = O(1), by Lemma 3 in Fan et al.

(2019) we have that with probability at least 1 − d−10, ∥Ω(ℓ)∥2 ≲
√
d. Combined with

previous results on the eigengap σmin(Λ
(ℓ)
K ), we have that with probability 1−O(d−9), for a

fixed constant C > 0

∥Ω(ℓ)∥2 ≤ C
√
d, σmin(Λ

(ℓ)
K ) ≥ ∆/2, ∀ℓ ∈ [L].

Besides, under Assumption 1, we have that ∥E∥2 ≲ r1(d) log d with probability at least

1 − d−10, and in turn by Wedin’s Theorem (Wedin, 1972), with high probability for all

ℓ ∈ [L] we have that

∥V̂(ℓ)V̂(ℓ)⊤ −VV⊤∥2 ≲ ∥E (ℓ)∥2/σmin(Λ
(ℓ)
K ) ≲ ∥E∥2∥Ω(ℓ)/

√
p∥2/∆ ≲

r1(d)

∆
log d

√
d

p
,
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and thus ∥Σ̃−VV⊤∥2 = OP

(
r1(d) log d

√
d/p/∆

)
. Besides, we have

P⊥(Σ̃−VV⊤)V =
1

L

L∑
ℓ=1

P⊥(V̂
(ℓ)V̂(ℓ)⊤ −VV⊤)V

=
1

L

L∑
ℓ=1

P⊥

(
f
(
S(E (ℓ))Γ̃

(ℓ)
K

)
[1:d,:]

Γ
(ℓ)⊤
K + Γ

(ℓ)
K f
(
S(E (ℓ))Γ̃

(ℓ)
K

)⊤
[1:d,:]

)
V +R1(Σ̃)

=
1

L

L∑
ℓ=1

P⊥E(Ω
(ℓ)/

√
p)(Y(ℓ))†V +R1(Σ̃) =

1

L

L∑
ℓ=1

P⊥E(Ω
(ℓ)/

√
p)B(ℓ)⊤ +R1(Σ̃)

=
1

L
P⊥EΩBΩ +R1(Σ̃),

where R1(Σ̃) is the residual matrix with ∥R1(Σ̃)∥2 = OP (∥S(E (ℓ))∥22/∆2). Now we study

the matrix B(ℓ) = (ΛV⊤Ω(ℓ)/
√
p)†. From previous results we know that with probability

at least 1− d−9, 1/2 ≤ σmin(Ω̃
(ℓ)/

√
p) ≤ σmax(Ω̃

(ℓ)/
√
p) ≤ 3/2 for any ℓ ∈ [L], and in turn

2
3|λ1| ≤ σmin(B

(ℓ)) ≤ σmax(B
(ℓ)) ≤ 2

∆
, ∀ℓ ∈ [L]. Now for any vector y ∈ RK such that

∥y∥2 = 1, with probability 1−O(d−9) we have that

∥BΩy∥2 = ∥(y⊤B(1)⊤, . . . ,y⊤B(L)⊤)⊤∥2 =
( L∑
ℓ=1

∥B(ℓ)y∥22
)1/2

,

∥BΩ∥2 = max
∥y∥2=1

∥BΩy∥2 = max
∥y∥2=1

( L∑
ℓ=1

∥B(ℓ)y∥22
)1/2

≤
( L∑
ℓ=1

∥B(ℓ)∥22
)1/2

≤ 2
√
L

∆
,

σmin (BΩ) = min
∥y∥2=1

∥BΩy∥2 = min
∥y∥2=1

( L∑
ℓ=1

∥B(ℓ)y∥22
)1/2

≥
( L∑
ℓ=1

σ2
min(B

(ℓ))
)1/2

≥ 2
√
L

3|λ1|
.

Now since we know that the entries of
√
pΩ are i.i.d. standard Gaussian, similar as before,

under the condition that Lp ≪ d, by Lemma 3 in Fan et al. (2019) we have with high

probability that 1
2

√
d
p
≤ σmin(Ω) ≤ σmax(Ω) ≤ 3

2

√
d
p
. Therefore, we have the following
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upper bound on the norm of the leading term

∥P⊥(Σ̃−VV⊤)V∥2 ≲ ∥ 1
L
P⊥EΩBΩ∥2 + ∥R1(Σ̃)∥2 ≤

1

L
∥E∥2∥Ω∥2∥BΩ∥2 + ∥R1(Σ̃)∥2

= OP

(√ d

Lp

r1(d) log d

∆
+ r1(d)

2(log d)2
d

p∆2

)
.

Thus we have the following decomposition

ṼH0 −V = P⊥(Σ̃−VV⊤)V +R0(Σ̃)

=
1

L
P⊥EΩBΩ +R1(Σ̃) +R0(Σ̃)

=
1

L
P⊥E0ΩBΩ +

1

L
P⊥EbΩBΩ +R1(Σ̃) +R0(Σ̃),

where R0(Σ̃) is a residual matrix with

∥R0(Σ̃)∥2 = OP (∥Σ̃−VV⊤∥2∥P⊥(Σ̃−VV⊤)V∥2)

= OP

(r1(d)2(log d)2d√
Lp∆2

)
+ oP

(
r1(d)

2(log d)2
d

p∆2

)
.

Thus

∥R0(Σ̃) +R1(Σ̃)∥2 = OP

(
r1(d)

2(log d)2
d

p∆2

)
.

Next we consider the term ṼFH − ṼH0. We denote the SVD of Σ̃q by ṼΛ̃q
KṼ

⊤ +

Ṽ⊥Λ̃
q
⊥Ṽ

⊤
⊥, and by Weyl’s inequality (Franklin, 2012), we know that ∥Λ̃⊥∥2 ≤ ∥Σ̃−VV⊤∥2 =

OP

(
r1(d) log d

√
d/p/∆

)
and σK(Λ̃K) ≥ 1 − ∥Σ̃ −VV⊤∥2 ≥ 1 − OP (r1(d) log d

√
d/p/∆).

Thus under the condition that r1(d) log d
√
d/p/∆ = o(1), for large enough d with high

probability we have

∥Λ̃q
⊥∥2 ≤ (r1(d) log d

√
d/p/∆)q and σK(Λ̃

q
K) ≥ (1−O(r1(d) log d

√
d/p/∆))q ≥ (1/2)q.
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Similar as before, we know that with probability 1 the left singular vector space of

ṼΛ̃q
KṼ

⊤ΩF = ṼΛ̃q
KΩ̃

F and the column space of Ṽ are the same, where Ω̃F := Ṽ⊤ΩF ∈

RK×p′ is still a Gaussian test matrix with i.i.d. entries. By Lemma 3 in Fan et al. (2019),

we have with probability at least 1 − d−10, σmin(Ω̃
F/
√
p′) ≥ 1 − O(

√
K
p′
log d). When√

K
p′
log d = o(1), by Wedin’s Theorem (Wedin, 1972), there exists a constant η > 0 such

that with high probability we have

∥ṼFH− ṼH0∥2 = ∥ṼFH1 − Ṽ∥2 ≲ ∥Ṽ⊥Λ̃
q
⊥Ṽ

⊤
⊥Ω

F/
√
p′∥2/σK(ṼΛ̃q

KΩ̃
F/
√
p′)

≤ ∥Λ̃⊥∥q2∥ΩF/
√
p′∥2

σK(Λ̃
q
K)σK(Ω̃

F/
√
p′)

≲

(
2ηr1(d) log d

√
d/p

∆

)q√
d

p′
.

Denote r′ := 2ηr1(d) log d
√
d/p/∆ = o

(
(log d)−1/4

)
. Then it can be seen that when

q ≥ log d≫ 2 +
log d

log log d
≥ 2 +

log
√
d/p′

log(1/r′)
,

we have that (r′)q
√
d/p′ = o

(
(r′)2

)
and ∥ṼFH− ṼH0∥2 = OP

(
r1(d)

2(log d)2 d
p∆2

)
.

Now for a given j ∈ [d], recall that with high probability σmin(Σj) = Ω
(
η2(d)

)
. Therefore,

under the condition that d2r1(d)
4(log d)4

(
p2∆4η2(d)

)−1
= o(1) and dr2(d)

2
(
Lp∆2η2(d)

)−1
=

o(1), we have with probability 1−O(d−9), ∥ 1
L
P⊥EbΩBΩ∥2 = OP

(√
d

∆2Lp
r2(d)

)
= oP

(
(σmin(Σj))

1/2
)
,

and ∥R0(Σ̃) +R1(Σ̃)∥2 = oP
(
(σmin(Σj))

1/2
)
. Then under Assumption 5, we have

Σ
−1/2
j (ṼFH−V)⊤ej = Σ

−1/2
j (ṼFH− ṼH0 + ṼH0 −V)⊤ej

= Σ
−1/2
j (

1

L
B⊤

ΩΩ
⊤E0P⊥ej)+Σ

−1/2
j (ṼFH−ṼH0+R0(Σ̃)+R1(Σ̃)+

1

L
P⊥EbΩBΩ)

⊤ej

= Σ
−1/2
j V(E0)

⊤ej + oP (1)
d→ N (0, IK).
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D.7 Proof of Corollary 4.9

To prove Corollary 4.9, it suffices for us to show that Assumptions 1, 2 and 5 are met.

From the proof of Corollary 4.2, we know that Assumption 1 is satisfied. We move on to

show that Assumption 2 is met. Define Vd = (V,V⊥) as the stacking of eigenvectors for

the covariance matrix Σ. Note that V⊥ is not identifiable under the spiked covariance

model and is unique up to orthogonal transformation. Let Zi = V⊤
d Xi, and Zi ∼ N (0,Λd),

where Λd = diag(Λ + σ2IK , σ
2Id−K). We let ΓS = (u1, . . . ,uK+1) be the stacking of

eigenvectors for the matrix ΣS, and let σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃K+1 be the K + 1 eigenvalues

of ΣS. Correspondingly, let σ̂1 ≥ . . . ≥ σ̂K+1 = σ̂2 be the eigenvalues of the sample

covariance matrix Σ̂S. Since ΣS = (V)[S,:]Λ(V)⊤[S,:] + σ2IK+1, we know that σ̃K+1 = σ2

and δ = σ̃K − σ̃K+1 ≥ ∆σ2
min

(
(V)[S,:]

)
. We define c̃ = (V⊥

[S,:])
⊤uK+1, and denote c̃0 =

(0, Id−K)
⊤c̃ ∈ Rd. Then by the proof of Lemma 6.2 in Wang and Fan (2017), we know that

σ̂2 − σ2 = c̃⊤0 (
1

n

n∑
i=1

ZiZ
⊤
i −Λd)c̃0 +

1

n
OP

(
MK+1 − σ2WK+1

)
,

where MK+1 =
∑

k≤K f
2
k (σ̃k + (σ̂k − σ̃k)) ,WK+1 =

∑
k≤K f

2
k and fk is the (K + 1)-th

element of the k-th eigenvector of Γ⊤
S Σ̂SΓS multiplied by

√
n for k ≤ K. We let f =

(f1, . . . , fK)
⊤/

√
n. By Wedin’s Theorem (Wedin, 1972) and Lemma 3 in Fan et al. (2019),

we have that with probability at least 1− d−10, |σ̂k − σ̃k| ≤ ∥Σ̂S −ΣS∥2 ≲ σ̃1 log d
√

K
n
for

k ≤ K. If we denote by FS := (IK , 0)
⊤ the stacked topK eigenvectors of Γ⊤

SΣSΓS, and by F̂S

the stacked top K eigenvectors of Γ⊤
S Σ̂SΓS, then we know that f is the (K+1)-th row of F̂S.

By Davis-Kahan’s Theorem (Yu et al., 2015), we also know that there exists an orthonormal
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matrix OS ∈ RK×K such that ∥f∥2 = ∥O⊤
S f − 0∥2 ≤ ∥F̂SOS −FS∥2 ≲ σ̃1 log d

δ

√
K
n
, and thus

WK+1 =
∑
k≤K

f 2
k = n∥f∥22 ≲

σ̃2
1K(log d)2

δ2
,

and MK+1 ≤ σ̃1
∑
k≤K

f 2
k + (

∑
k≤K

f 2
k )∥Σ̂S −ΣS∥2 ≲

σ̃3
1K

δ2
(log d)2.

Thus we can write σ̂2 − σ2 = c̃⊤0 (
1
n

∑n
i=1 ZiZ

⊤
i −Λd)c̃0 +OP

( σ̃3
1K

δ2n
(log d)2

)
.

Now we take E0 = Σ̂ −Σ − (c̃⊤0 (
1
n

∑n
i=1ZiZ

⊤
i −Λd)c̃0)Id, and from previous results

we know that with high probability ∥Eb∥2 = ∥E−E0∥2 ≲ σ̃3
1K

δ2n
(log d)2, such that we have

r2(d) ≍ σ̃3
1K

δ2n
(log d)2 = o (r1(d)) and Assumption 2 is satisfied.

Now we move on to study the statistical rate η2(d). For any j ∈ [d], we first study

the covariance of E0P⊥ej. We denote Ẽ = Z1Z
⊤
1 −Λd, then it’s not hard to verify that

Cov(Ẽst, Ẽgh) = λs(Σ)λt(Σ)(I{s = g, t = h} + I{s = h, t = g}). Since E0P⊥ej and

V⊤
d E0P⊥ej share the same eigenvalues, we can study the covariance of V⊤

d E0P⊥ej instead.

Then Cov(V⊤
d E0P⊥ej) can be calculated as following

Cov
{
V⊤
d

( 1
n

n∑
i=1

XiX
⊤
i −Σ

)
V⊥(V⊥)⊤ej −

(
c̃⊤0 (

1

n

n∑
i=1

ZiZ
⊤
i −Λd)c̃0

)
V⊤
d P⊥ej

}
= Cov

{
V⊤
d

( 1
n

n∑
i=1

XiX
⊤
i −Σ

)
Vd(0, Id−K)

⊤ẽ−
(
c̃⊤0 (

1

n

n∑
i=1

ZiZ
⊤
i −Λd)c̃0

)
ẽ0

}
= Cov

{( 1
n

n∑
i=1

ZiZ
⊤
i −Λd

)
ẽ0 −

(
c̃⊤0 (

1

n

n∑
i=1

ZiZ
⊤
i −Λd)c̃0

)
ẽ0

}
,
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where ẽ = (V⊥)⊤ej and ẽ0 = (0, Id−K)
⊤ẽ. Then we have

Cov(V⊤
d E0P⊥ej) =

1

n
Cov(Ẽẽ0 − c̃⊤0 Ẽc̃0ẽ0)

=
1

n

{
Cov(Ẽẽ0) + Var

(
c̃⊤0 Ẽc̃0

)
ẽ0ẽ

⊤
0 − Cov(Ẽẽ0, c̃

⊤
0 Ẽc̃0)ẽ

⊤
0 − ẽ0Cov(Ẽẽ0, c̃

⊤
0 Ẽc̃0)

⊤
}

=
1

n
{∥ẽ0∥22σ2Λd + 3σ4ẽ0ẽ

⊤
0 − 2σ4⟨c̃, ẽ⟩(c̃0ẽ⊤0 + ẽ0c̃

⊤
0 )}.

Thus it can be seen that the covariance matrix is block-diagonal:

Cov(V⊤
d E0P⊥ej) =

1

n

∥ẽ0∥22σ2(Λ+ σ2IK) 0

0 ∥ẽ0∥22σ4(Id−K + 3τ1τ
⊤
1 − 2ρc̃τ⊤1 − 2ρτ1c̃

⊤)

 ,

where τ1 = ẽ/∥ẽ∥2 and ρ = ⟨c̃, τ1⟩. Then following basic algebra, we can write Cov(E0P⊥ej)

as:

1

n

{
σ2∥ẽ0∥22Σ+3σ4P⊥eje

⊤
j P⊥−2σ4ρ∥ẽ0∥2

[
(P⊥)[:,S]uK+1e

⊤
jP⊥+P⊥ej(uK+1)

⊤(P⊥)[S,:]
]}
.

To study η2(d), we will first define Σ′
j as following

Σ′
j =

1

nL2
B⊤

ΩΩ
⊤
{
σ2Σ+ 3σ4eje

⊤
j − 2σ4ρ∥ẽ0∥2

(
(Id)[:,S]uK+1e

⊤
j + eju

⊤
K+1(Id)[S,:]

)}
ΩBΩ.
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We know that ∥ẽ0∥22 = ∥P⊥ej∥22 = 1−O(µK/d), thus we have

∥∥∥σ2∥P⊥ej∥22Σ− σ2Σ
∥∥∥
2
≤ O

(µKσ2

d
(σ2 + λ1)

)
,

∥3σ4P⊥eje
⊤
j P⊥ − 3σ4eje

⊤
j ∥2 ≤ 3σ4∥(P⊥ej − ej)e

⊤
j P⊥∥2 + 3σ4∥ej(P⊥ej − ej)

⊤∥2 ≲ σ4

√
µK

d
,

∥(P⊥)[:,S]uK+1e
⊤
j P⊥ − (Id)[:,S]uK+1e

⊤
j ∥2 ≤ ∥[(P⊥)[:,S] − (Id)[:,S]]uK+1e

⊤
j P⊥∥2

+ ∥(Id)[:,S]]uK+1e
⊤
j (P⊥ − Id)∥2 ≲ K

√
µ

d
+

√
µK

d
≲ K

√
µ

d
,

2σ4ρ∥ẽ0∥2
∥∥∥[(P⊥)[:,S]uK+1e

⊤
j P⊥+P⊥ej(uK+1)

⊤(P⊥)[S,:]
]
−
[
(Id)[:,S]uK+1e

⊤
j+ej(uK+1)

⊤(Id)[S,:]
]∥∥∥

2

≲ Kσ4

√
µ

d
,

and in summary we have ∥Σj −Σ′
j∥2 = OP

(
Kdσ4

n∆2Lp

√
µ
d

)
= OP

(
Kλ21
∆2

√
µ
d

)
dσ4

nLpλ21
= oP

(
dσ4

nLpλ21

)
.

Now we study ∥Σ′
j − Σ̃j∥2. Since the entries of

√
pΩ are i.i.d. standard Gaussian, by

Lemma 3 in Fan et al. (2019), we know that with probability 1−O(d−9), we have

∥Ω∥2,∞ ≲
√
L, and ∥Ω[S,:]∥2 ≲

√
L.

Therefore, under the condition that
λ21Lp

∆2d
= o(1) we have

∥Σ′
j − Σ̃j∥2 = σ4

∥∥∥ 1

nL2
B⊤

ΩΩ
⊤
(
3eje

⊤
j − 2ρ

(
(Id)[:,S]uK+1e

⊤
j + eju

⊤
K+1(Id)[S,:]

))
ΩBΩ

∥∥∥
2

≲
σ4

nL2
∥BΩ∥22∥Ω∥2,∞

(
∥Ω∥2,∞ + ∥Ω[S,:]∥2

)
= OP

( σ4

n∆2

)
= oP (

dσ4

nLpλ21
).

As for Σ̃j , by Lemma 3 in Fan et al. (2019) with high probability we have that σK(Ω
⊤V) ≳

√
L and in turn

σK(Σ̃j) ≳
σ2

nL2

(
σK(BΩ)

)2 ((
σK(Ω

⊤V
)2
∆+

(
σK(Ω

)2
σ2
)
≳

dσ4

nLpλ21
+
σ2∆

nλ21
.
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Therefore, combining the previous results, we have that by Weyl’s inequality (Franklin,

2012), with high probability

λK
(
Σj

)
≥ λK

(
Σ̃j

)
− ∥Σj −Σ′

j∥2 − ∥Σ′
j − Σ̃j∥2

≳
dσ4

nLpλ21
+
σ2∆

nλ21
− o(

dσ4

nLpλ21
) ≳

dσ4

nLpλ21
+
σ2∆

nλ21
.

Thus we know η2(d) ≍ dσ4/(nLpλ21) + σ2∆/(nλ21).

Recall from the proof of Corollary 4.2 with probability 1− O(d−10) we have ∥E0∥2 ≲

(λ1 + σ
2) log d

√
r
n
. Also recall that r2(d) ≍ σ̃3

1K

δ2n
(log d)2. Therefore, under the condition that

n≫ κ41λ1dr
2(log d)4

pσ2

(
κ1
d

p
∧ λ1
σ2
L

)
and

σ̃6
1K

2

δ4σ4n
(log d)4 ≪ (

∆

λ1
)2,

we have d2r1(d)
4(log d)4

(
p2∆4η2(d)

)−1
= o(1) and dr2(d)

2
(
Lp∆2η2(d)

)−1
= o(1).

Now we need to verify Assumption 5. It can be seen that the randomness of the

leading term comes from Ω and E0 both. We will first establish the results conditional

on Ω. In fact, we will first show a more general CLT that will also cover the case of the

leading term under the regime Lp≫ d. More specifically, we will show that for any matrix

A ∈ Rd×K that satisfies the following two conditions: (1) σmax(A)/σmin(A) ≤ C|λ1|/∆; (2)

λK
(
Cov(A⊤E0P⊥ej)

)
≥ cn−1σ4

(
σmin(A)

)2
, where C, c > 0 are fixed constants irrelevant

to A and we abuse the notation by denoting Σj := Cov(A⊤E0P⊥ej), it holds that

Σ
−1/2
j A⊤E0P⊥ej

d→ N (0, IK). (D.31)

Now for any matrix A ∈ Rd×K satisfying the aforementioned conditions, to show that

A⊤E0P⊥ej is asymptotically normal, we only need to show that a⊤Σ
−1/2
j A⊤E0P⊥ej

d→
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N (0, 1) for any a ∈ RK with ∥a∥2 = 1. We can write

a⊤Σ
−1/2
j A⊤E0P⊥ej =

1

n

n∑
i=1

a⊤Σ
−1/2
j A⊤{XiX

⊤
i −Σ− c̃⊤0 (ZiZ

⊤
i −Λd)c̃0Id}P⊥ej

=
1

n

n∑
i=1

{
a⊤Σ

−1/2
j A⊤(XiX

⊤
i −Σ)P⊥ej − c̃⊤0 (ZiZ

⊤
i −Λd)c̃0(a

⊤Σ
−1/2
j A⊤P⊥ej)

}
.

We let xi = a⊤Σ
−1/2
j A⊤(XiX

⊤
i −Σ)P⊥ej and yi = c̃⊤0 (ZiZ

⊤
i −Λd)c̃0(a

⊤Σ
−1/2
j A⊤P⊥ej).

For Σj, we have that ∥Σ−1/2
j ∥2 ≤ σmin(Σj)

−1/2 ≤
√
n/
(
σ2σmin(A)

)
. Then we have

E|xi|3 ≲ E|a⊤Σ
−1/2
j A⊤XiX

⊤
i P⊥ej|3 ≤

√
E|a⊤Σ

−1/2
j A⊤Xi|6E|e⊤j P⊥Xi|6

≲ ∥Σ−1/2
j ∥32

√
(λ1 + σ2)3σ6∥A∥62,

E|yi|3 ≲ (a⊤Σ
−1/2
j A⊤P⊥ej)

3E|c̃⊤0 ZiZ
⊤
i c̃0|3 ≤ ∥Σ−1/2

j A∥32E|c̃⊤0 Zi|6

≲ ∥Σ−1/2
j ∥32(λ1 + σ2)3∥A∥32,

E|xi − yi|3 ≲ E|xi|3 + E|yi|3 ≲ ∥Σ−1/2
j ∥32

(√
(λ1 + σ2)3σ6∥A∥62 + (λ1 + σ2)3∥A∥32

)
≲ n3/2(λ1 + σ2)3∥A∥32/

(
σ2σmin(A)

)3
.

Thus ∑n
i=1 E|xi − yi|3

Var
{∑n

i=1(xi − yi)
}3/2

≲
n(λ1 + σ2)3∥A∥32
n3/2σ6σmin(A)3

≲
(λ1 + σ2)3λ31√

nσ6∆3
= o(1).

Thus the Lyapunov’s condition is met and (D.31) holds. Then we take A = ΩBΩ, and

define the following event

AΩ =

{
1/2 ≤ σmin(Ω̃

(ℓ)/
√
p) ≤ σmax(Ω̃

(ℓ)/
√
p) ≤ 3/2, ∀ℓ ∈ [L]

}
∩
{
1

2

√
d

p
≤ σmin(Ω) ≤ σmax(Ω) ≤ 3

2

√
d

p
, ∀ℓ ∈ [L]

}
.
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Then from previous results we know that P((AΩ)
c) = o(1), and under the event AΩ we have

σmax(ΩBΩ)

σmin(ΩBΩ)
≤ 9λ1/∆, λK(Σj) ≥

σ4

2n

(
σmin(ΩBΩ)

)2
.

Thus from the above proof, for any vector t ∈ RK , we have P
(
Σ

−1/2
j V(E0)

⊤ej ≤

t|AΩ

)
− Φ(t) = o(1), where Φ(·) is the CDF for N (0, IK). Then we have

P
(
Σ

−1/2
j V(E0)

⊤ej ≤ t
)
= E

(
P
(
Σ

−1/2
j V(E0)

⊤ej ≤ t|Ω
))

= P
(
Σ

−1/2
j V(E0)

⊤ej ≤ t|Ω ∈ AΩ

)
P(AΩ) + P

(
Σ

−1/2
j V(E0)

⊤ej ≤ t|Ω ∈ Ac
Ω

)
P(Ac

Ω)

=
(
Φ(t) + o(1)

)(
1− o(1)

)
+ o(1) = Φ(t) + o(1).

Hence we have that Assumption 5 holds and (12) follows. Next we need to show that the

result also holds for Σ̃j. From previous discussion we already know that ∥Σj − Σ̃j∥2 =

oP
(
λK(Σ̃j)

)
, then by Lemma 13 in Chen et al. (2019) we have that ∥Σ̃−1/2

j Σ
1/2
j − Id∥2 =

OP

(
∥Σ̃−1/2

j ∥2∥Σ1/2
j − Σ̃

1/2
j ∥2

)
= OP

(
λK(Σ̃j)

−1∥Σj − Σ̃j∥2
)
= oP (1). Then by Slutsky’s

Theorem, we have

Σ̃
−1/2
j (ṼFH−V)⊤ej = (Σ̃

−1/2
j Σ

1/2
j )Σ

−1/2
j (ṼFH−V)⊤ej

d→ N (0, IK).

Finally, we move on to verify the validity of the estimator Σ̂j for the asymptotic

covariance matrix. From Lemma 7 in Fan et al. (2019), it can be seen that with probability

1− o(1), H is orthonormal. When H is orthonormal, by Slutsky’s Theorem we have that

HΣ̃
−1/2
j (ṼFH−V)⊤ej = HΣ̃

−1/2
j H⊤(ṼF −VH⊤)⊤ej

d→ N (0, IK),

where it can be seen that HΣ̃
−1/2
j H⊤ = (HΣ̃jH

⊤)−1/2. Therefore, it suffices to show that
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∥Σ̂j −HΣ̃jH
⊤∥2 = oP

(
λK(Σ̃j)

)
, and the results will hold by Slutsky’s Theorem. Recall

from the proof of Corollary 4.2, we have the following bounds

∥Σ− Σ̂∥2 = OP

(
(λ1 + σ2)

√
r

n

)
, |σ̂2 − σ2| = OP (σ̃1

√
K

n
),

We will bound the components of ∥Σ̂j − Σ̃j∥2 respectively. We have

∥σ2Σ− σ̂2Σ̂∥2 ≲ |σ̂2 − σ2|∥Σ∥2 + σ2∥Σ− Σ̂∥2 = OP

(
σ̃1(λ1 + σ2)

√
K

n

)
+OP

(
σ2(λ1 + σ2)

√
r

n

)
= OP

(
σ2(λ1 + σ2)

√
r

n

)
,

Also, from proof of Theorem 4.8, we have that with high probability

∥ṼFH−V∥2 = ∥ṼF −VH⊤∥2 ≲ ∥E0∥2∥Ω∥2∥BΩ∥2/L = OP (κ1

√
dr

npL
),

and ∥Σ̂tr−VΛV⊤∥2 = OP

(
(λ1+σ

2)
√

r
n

)
, where Σ̂tr = Σ̂−σ̂2Id.Then with high probability,

for all ℓ ∈ [L] we have that

∥∥(ṼF⊤Σ̂tr −HΛV⊤)Ω(ℓ)/
√
p
∥∥
2
≲

√
d

p

(
∥Σ̂tr −VΛV⊤∥2 + λ1∥ṼF −VH⊤∥2

)
= OP

(
κ1λ1

√
d2r

np2L

)
= oP (∆),

and thus by Theorem 3.3 in Stewart (1977), with high probability for all ℓ ∈ [L] we have

that

∥B̂(ℓ) −B(ℓ)H⊤∥2 =
∥∥(ṼF⊤Σ̂trΩ(ℓ)/

√
p)† − (HΛV⊤Ω(ℓ)/

√
p)†
∥∥
2

= OP

(
∆−2κ1λ1

√
d2r

np2L

)
,
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and in turn we have ∥B̂Ω −BΩH
⊤∥2 = OP

(
∆−2κ1λ1

√
d2r
np2L

)√
L = OP

(
∆−2κ1λ1

√
d2r
np2

)
.

Thus combining the above results, under the condition that
λ1κ41
σ2

√
d2r
np2L

= o(1), following

basic algebra we have

∥Σ̂j −HΣ̃jH
⊤∥2≲ OP

(
σ2(λ1+σ

2)

√
r

n

) d

nLp∆2
+OP

(
d
√
L

nL2p∆3
σ2(σ2+λ1)κ1λ1

√
d2r

np2

)

= OP

( λ21
∆2σ2

(λ1 + σ2)

√
r

n

) dσ4

nLpλ21
+OP

(λ1κ41
σ2

√
d2r

np2L

) dσ4

nLpλ21
= oP

(
λK(Σ̃j)

)
.

Therefore, by Slutsky’s Theorem, under the event B := {H is orthonormal}, for any vector

t ∈ RK , we have that P(Σ̂−1/2
j (ṼF −VH⊤)⊤ej ≤ t|B)− Φ(t) = o(1), and thus

P(Σ̂−1/2
j (ṼF −VH⊤)⊤ej ≤ t) = P(Σ̂−1/2

j (ṼF −VH⊤)⊤ej ≤ t|B)P(B)

+ P(Σ̂−1/2
j (ṼF −VH⊤)⊤ej ≤ t|Bc)P(Bc)

= P
(
Σ̂

−1/2
j (ṼF −VH⊤)⊤ej ≤ t|B

)(
1− o(1)

)
+ o(1) = Φ(t) + o(1).

Hence the claim follows.

D.8 Proof of Corollary 4.10

We will verify that Assumptions 1, 2, 3 and 5 hold. First, it is not hard to see that

there exists some orthonormal matrix O ∈ RK×K such that V = FC−1O, where C =

diag(
√
d1, . . . ,

√
dK). From the problem setting of Example 2 we also know that there exists

a constant C > 0 such that

C−1Kmax
k
dk ≤ Kmin

k
dk ≤ d ≤ Kmax

k
dk, d1 ≍ . . . ≍ dK ≍ d/K,
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and thus that
√
d/K ≲ σK(C) ≤ ∥C∥2 ≲

√
d/K. Then ∥V∥2,∞ ≲

√
K
d
∥F∥2,∞ =

√
K
d
.

Thus Assumption 3 holds with µ = O(1).

From the proof of Corollary 4.2 we know that Assumption 1 is satisfied. Besides,

recall from Remark 13, under the condition that
√
K/d log d = O(1), with probability at

least 1− d−10 we have that ∥E∥2 ≲ d∆0/
√
K +

√
dn log d := r′1(d), which is sharper than

r1(d) log d. Since Eb = 0, we have r2(d) = 0 and Assumption 2 holds trivially. Now we move

on to study the minimum covariance eigenvalue rate η2(d). From the proof of Corollary 4.2,

we know that

E = E0 = FΘ⊤Z+ Z⊤ΘF⊤ + Z⊤Z− nId =
n∑
i=1

{
QiZ

⊤
i. + Zi.Q

⊤
i + Zi.Z

⊤
i. − Id

}
,

where Qi = FΘi. ∈ Rd with Θi. being the i-th row of Θ, Zi. is the i-th row of Z and

Zi.
i.i.d∼ N (0, Id). Then for j ∈ [d], we have

Cov(E0P⊥ej) = Cov
( n∑
i=1

{
QiZ

⊤
i. + Zi.Q

⊤
i + Zi.Z

⊤
i. − Id

}
P⊥ej

)
=

n∑
i=1

Cov
({

QiZ
⊤
i. + Zi.Q

⊤
i + Zi.Z

⊤
i. − Id

}
P⊥ej

)
=

n∑
i=1

Cov
({

QiZ
⊤
i. + Zi.Z

⊤
i. − Id

}
P⊥ej

)
,

where the last equality is due to the fact that P⊥Qi = P⊥FΘi. = 0. Now for i ∈ [n], we
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calculate Cov
({

QiZ
⊤
i. + Zi.Z

⊤
i. − Id

}
P⊥ej

)
. Following basic algebra, we have that

Cov
({

QiZ
⊤
i.+Zi.Z

⊤
i.−Id

}
P⊥ej

)
=E
({

QiZ
⊤
i.+Zi.Z

⊤
i.

}
P⊥eje

⊤
j P⊥

{
Zi.Q

⊤
i +Zi.Z

⊤
i.

})
−P⊥eje

⊤
j P⊥

= ∥P⊥ej∥22(QiQ
⊤
i + Id) + 2P⊥eje

⊤
j P⊥ −P⊥eje

⊤
j P⊥

= ∥P⊥ej∥22(QiQ
⊤
i + Id) +P⊥eje

⊤
j P⊥,

and thus

Cov(E0P⊥ej) =
n∑
i=1

(
∥P⊥ej∥22(QiQ

⊤
i +Id)+P⊥eje

⊤
j P⊥

)
=∥P⊥ej∥22(

n∑
i=1

QiQ
⊤
i +nId)+nP⊥eje

⊤
j P⊥

= ∥P⊥ej∥22(FΘ⊤ΘF⊤ + nId) +nP⊥eje
⊤
j P⊥.

Then since ∥P⊥ej∥2 = 1 − K/d = 1 − o(1), we have that λd
(
Cov(E0P⊥ej)

)
≳ n, and

hence we have η2(d) ≍ dn/(λ21Lp). Then under the condition that n ≫ d3L/p and

∆2
0 ≫ K(log d)2

√
dnL/p, we have that

r′1(d)
4

η2(d)
≲
λ21Lp

d

(
d4∆4

0

K2n
+ d2n(log d)4

)
≪ λ21p

2d2∆4
0

K2d2
≍ p2∆4

d2
,

d2r′1(d)
4

p2∆4η2(d)
= o(1).

Now we move on to check Assumption 5. Similar as in the proof of Corollary 4.9, we

will first show the results conditional on Ω by establishing a more general CLT . More

specifically, we will show that for any a ∈ RK with ∥a∥2 = 1, and A ∈ Rd×K such

that λK
(
Cov(A⊤E0P⊥ej)

)
≥ cnσmin(A)2 and σmax(A)/σmin(A) ≤ C, where C, c > 0 are

constants irrelevant to A and we abuse the notation by denoting Σj := Cov(A⊤E0P⊥ej),
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we have a⊤Σ
−1/2
j A⊤E0P⊥ej

d→ N (0, 1). Define Q = ΘF⊤. We know that

∥Q∥2,∞ = max
i∈[n]

∥Qi∥2 ≤ ∥F∥2∥Θ∥2,∞ ≲ µθ∆0

√
d

n
, and

a⊤Σ
−1/2
j A⊤E0P⊥ej =

n∑
i=1

{
a⊤Σ

−1/2
j A⊤(QiZ

⊤
i. + Zi.Z

⊤
i. − Id)P⊥ej

}
,

and we denote

xi = a⊤Σ
−1/2
j A⊤QiZ

⊤
i.P⊥ej, yi = a⊤Σ

−1/2
j A⊤(Zi.Z

⊤
i. − Id)P⊥ej.

Then we have

E|xi + yi|3 ≲ E|xi|3 + E|yi|3 ≲ ∥Σ−1/2
j A⊤Qi∥32 + ∥Σ−1/2

j A⊤∥32

≤ ∥Σ−1/2
j ∥32∥A∥32(∥Q∥32,∞ + 1) ≲ n−3/2

{ ∥A∥2
σmin(A)

}3{
µ3
θ∆

3
0

(d
n

)3/2
+ 1
}

≲ n−3/2µ3
θ∆

3
0

(d
n

)3/2
+ n−3/2.

Then

∑n
i=1 E|xi + yi|3

Var
{∑n

i=1(xi + yi)
}3/2 =

n∑
i=1

E|xi + yi|3 ≲ n−2µ3
θ∆

3
0d

3/2 + n−1/2.

Then under the condition that ∆2
0 ≪ n4/3/(µ2

θd), we have that

n−2µ3
θ∆

3
0d

3/2 = o(1) and

(
n∑
i=1

E|xi + yi|3
)
Var

( n∑
i=1

(xi + yi)
)−3/2

= o(1).

Thus the Lyapunov’s condition is met and the CLT holds. Also recall from previous
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arguments, there exists a fixed constant C > 0 such that with high probability we have

σmax(ΩBΩ)

σmin(ΩBΩ)
≤ 9

(
σ1(Θ)

σK(Θ)

)2

≤ C, λK(Σj) ≥
n

2

(
σmin(ΩBΩ)

)2
.

Then by taking A = ΩBΩ and following similar steps as in the proof of Corollary 4.9, we

know that Assumption 5 is satisfied. Then by Theorem 4.8, (11) holds.

We move on to prove (14). It suffices to show that ∥Σj − Σ̃j∥2 = oP
(
λK(Σ̃j)

)
. When

∆2
0 ≪ n and K ≪ d, with high probability we have

∥Σj − Σ̃j∥2 ≲
d

L∆2p

{
(n+∆)(1−∥P⊥ej∥22) + n∥P⊥eje

⊤
j P⊥ − eje

⊤
j ∥2
}

+
n

L∆2
∥Ω∥22,∞ ≲

d

L∆2p

(Kn
d

+∆2
0 + n

√
K

d

)
+

n

∆2
= o(

dn

Lλ21p
) = oP

(
λK(Σ̃j)

)
.

Thus (14) holds.

Last we verify the validity of Σ̂j. Similar as in the proof of Corollary 4.9, it suffices

to show that ∥Σ̂j −HΣ̃jH
⊤∥2 = oP

(
λK(Σ̃j)

)
. Recall with high probability ∥M̂−M∥2 ≲

r′1(d) = d∆0/
√
K +

√
dn log d.

Also, from the proof of Theorem 4.8, we have that

∥ṼFH−V∥2 = ∥ṼF −VH⊤∥2 =
1

L
OP (∥M̂−M∥2∥Ω∥2∥BΩ∥2) = OP

(√ d

pL

r′1(d)

∆

)
,

Then with high probability, for all ℓ ∈ [L] we have that

∥∥(ṼF⊤M̂−HΛV⊤)Ω(ℓ)/
√
p
∥∥
2
≲

√
d

p

(
∥M̂−M∥2 + λ1∥ṼF −VH⊤∥2

)
= OP

(√
d2

p2L
r′1(d)

)
= oP (∆),
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and thus by Theorem 3.3 in Stewart (1977), we have that

∥B̂(ℓ) −B(ℓ)H⊤∥2 =
∥∥(ṼF⊤M̂Ω(ℓ)/

√
p)† − (HΛV⊤Ω(ℓ)/

√
p)†
∥∥
2
= OP

(√
d2

p2L

r′1(d)

∆2

)
,

and in turn we have ∥B̂Ω −BΩH
⊤∥2 = OP

(√
d2

p2L

r′1(d)

∆2

)√
L = OP

(
dr′1(d)

p∆2

)
.

Therefore, under the condition that ∆2
0 ≪ KLp2n2/d4, we have

∥Σ̂j −HΣ̃jH
⊤∥2 ≲

d

L∆2p
∥M̂−M∥2 + (n+ λ1)

d

pL∆
OP

(
d

p
√
L

r′1(d)

∆2

)
= oP

( dn

L∆2p

)
= oP

(
λK(Σ̃j)

)
.

Thus the claim follows.

D.9 Proof of Theorem 4.5

We will first decompose ṼFH−V = (ṼFH− ṼH1H0) + (ṼH1H0 − V̂H0) + (V̂H0 −V).

We will show that when L is sufficiently large the first two terms are negligible, and we will

consider the third term V̂H0 −V first. We will first study ∥V̂H0 −V −P⊥E0VΛ−1∥2,∞

by conducting decomposition of the error term. For the convenience of notations, we let

P = V⊤V for short. If we define Ĥ0 = V̂⊤V, we can decompose

V̂H0 −V −P⊥E0VΛ−1

= P⊥V̂Ĥ0−P⊥E0VΛ−1+P⊥V̂(H0−Ĥ0)+(PV̂H0−V).
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Under the condition that ∥E∥2/∆ = OP

(
r1(d)/∆

)
= oP (1), we have that H0 is a full-rank

orthonormal matrix with probability 1− o(1). Then we have with probability 1− o(1) that

∥P⊥V̂(H0 − Ĥ0)∥2,∞ = ∥(I−VV⊤)(V̂H0 −V)H⊤
0 (H0 − Ĥ0)∥2,∞

≤ ∥(V̂H0 −V)H⊤
0 (H0 − Ĥ0)∥2,∞ + ∥VV⊤(V̂H0 −V)H⊤

0 (H0 − Ĥ0)∥2,∞

≤ ∥V̂H0 −V∥2,∞∥H0 − Ĥ0∥2 + ∥V∥2,∞∥V̂H0 −V∥2∥H0 − Ĥ0∥2

≲
(
r3(d) +

√
µK

d

∥E∥2
∆

)
∥H0 − Ĥ0∥2.

From Lemma 7 in Fan et al. (2019), we know that ∥H0 − Ĥ0∥2 ≲ ∥V̂V̂⊤ − VV⊤∥22 ≲

(∥E∥2/∆)2 = OP (r1(d)
2/∆2), and thus we have

∥P⊥V̂(H0 − Ĥ0)∥2,∞ = OP

((
r3(d) +

√
µK

d

r1(d)

∆

)
r1(d)

2/∆2

)
.

We move on to bound ∥PV̂H0 −V∥2,∞,

∥PV̂H0 −V∥2,∞ = ∥V(Ĥ⊤
0 H0 − IK)∥2,∞ ≤ ∥V∥2,∞∥H0 − Ĥ0∥2

= OP

(√
µK

d
r1(d)

2/∆2

)
.

Finally, we consider the term P⊥V̂Ĥ0 −P⊥E0VΛ−1. We can decompose

P⊥V̂Ĥ0 −P⊥E0VΛ−1 = P⊥V̂Ĥ0ΛΛ−1 −P⊥E0VΛ−1

= P⊥
(
EV̂Ĥ0 − E0V + V̂(Λ− Λ̂)Ĥ0 + V̂(Ĥ0Λ−ΛĤ0)

)
Λ−1.
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We bound the three terms separately, with high probability

∥P⊥
(
EV̂Ĥ0−E0V

)
Λ−1∥2,∞≤∥P⊥E0(V̂Ĥ0−V)Λ−1∥2,∞+∥P⊥EbV̂Ĥ0Λ

−1∥2,∞

≤ ∥E0(V̂Ĥ0 −V)Λ−1∥2,∞ + ∥VV⊤E0(V̂Ĥ0 −V)Λ−1∥2,∞ + ∥Eb∥2/∆

≤ ∥E0(V̂Ĥ0 −V)∥2,∞/∆+ ∥V∥2,∞∥E0∥2∥V̂Ĥ0 −V∥2/∆+ r2(d)/∆

= OP

(
r4(d,Λ)/∆+

√
µK

d
r1(d)

2/∆2 + r2(d)/∆

)
.

As for P⊥V̂(Λ− Λ̂)Ĥ0Λ
−1, we have

∥P⊥V̂(Λ̂−Λ)Ĥ0Λ
−1∥2,∞ ≤ ∥(V̂H0 −V)H⊤

0 (Λ̂−Λ)Ĥ0Λ
−1∥2,∞

+ ∥VV⊤(V̂H0 −V)H⊤
0 (Λ̂−Λ)Ĥ0Λ

−1∥2,∞

≤ ∥V̂H0 −V∥2,∞∥E0∥2/∆+ ∥V∥2,∞∥V̂H0 −V∥2∥E0∥2/∆

= OP

{
r3(d)r1(d)/∆+

√
µK

d
r1(d)

2/∆2

}
,

and finally

∥P⊥V̂(ΛĤ0 − Ĥ0Λ)Λ−1∥2,∞ ≤ ∥(V̂H0 −V)H⊤
0 (ΛĤ0 − Ĥ0Λ)Λ−1∥2,∞

+ ∥VV⊤(V̂H0 −V)H⊤
0 (ΛĤ0 − Ĥ0Λ)Λ−1∥2,∞

= OP

((
r3(d) +

√
µK

d
r1(d)/∆

)
∥ΛĤ0 − Ĥ0Λ∥2/∆

)

= OP

((
r3(d) +

√
µK

d
r1(d)/∆

)
r1(d)/∆

)
,
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where the last inequality is due to the fact that

∥ΛĤ0 − Ĥ0Λ∥2 = ∥ΛV̂⊤VV⊤ − V̂⊤VΛV⊤∥2

= ∥ΛV̂⊤VV⊤ − V̂⊤MVV⊤∥2

≤ ∥ΛV̂⊤VV⊤ − V̂⊤M̂VV⊤∥2 + ∥V̂⊤EVV⊤∥2

= ∥(Λ− Λ̂)V̂⊤VV⊤∥2 + ∥V̂⊤EVV⊤∥2 ≤ 2∥E∥2.

Thus in summary, we have

∥V̂H0−V−P⊥E0VΛ−1∥2,∞=OP

{
r3(d)r1(d)

∆
+

√
µK

d

r1(d)
2

∆2
+
r2(d)+r4(d)

∆

}
,

Now we move on to bound ∥ṼH1H0 − V̂H0∥2. By Theorem 4.1, we know that

∥ṼH1H0 − V̂H0∥2 ≤ ∥ṼH1 − V̂∥2 ≲ ∥ṼṼ⊤ − V̂V̂⊤∥2

≤ ∥ṼṼ⊤ −V′V′⊤∥2 + ∥V′V′⊤ − V̂V̂⊤∥2

≤ ∥ṼṼ⊤ −V′V′⊤∥F + ∥V′V′⊤ − V̂V̂⊤∥2

= OP

( 1√
d

r1(d)
2

∆2
+

√
Kd

∆2pL
r1(d)

)
.

Finally, we consider ∥ṼFH− ṼH1H0∥2. From the proof of Theorem 4.1, we know that

∥ṼFH− ṼH1H0∥2 ≤ ∥ṼFH2 − Ṽ∥2 ≲ ∥ṼFṼF⊤ − ṼṼ⊤∥2

= OP

(
E(∥ṼFṼF⊤ − ṼṼ⊤∥22|Σ̃)1/2

)
≲

√
d

p′
∥Σ̃−VV⊤∥q2(

1− ∥Σ̃−VV⊤∥2
)q .

From the proof of Theorem 4.1, we know that with probability converging to 1, there exists
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some constant η > 0 such that ∥Σ̃−VV⊤∥2 ≤ ηr1(d) log d
√
d/p/∆ = o(1), and thus that

∥ṼFH2 − Ṽ∥2 = OP

(√
d

p′

(
2ηr1(d) log d

√
d

∆2p

)q)
.

When we choose q to be large enough, i.e.,

q ≥ 2 +
log(Ld)

log log d
≫ 1 +

log
(
log d

√
Ld/(Kp′)

)
log
(
(2η log d)−1∆/r1(d)

√
p/d
) ,

we have ∥ṼFH2 − Ṽ∥2 = OP (
√

Kd
∆2pL

r1(d)). Therefore, if we denote

r(d) := ∆−1
(√Kd

pL
r1(d) + r3(d)r1(d)+

√
µK

d∆2
r1(d)

2+r2(d)+r4(d)
)
,

we can write

ṼFH−V = P⊥E0VΛ−1 +R(d),

where ∥R(d)∥2,∞ = OP

(
r(d)

)
. Then under the condition that η1(d)

−1/2r(d) = o(1), we have

that ∥R(d)∥2,∞ = oP

(
σmin

(
Σj)
)1/2)

. Thus by Assumption 5,

Σ
−1/2
j (ṼFH−V)⊤ej = Σ

−1/2
j (Λ−1V⊤E0P⊥ej) + oP (1)

d→ N (0, IK).

D.10 Proof of Corollary 4.6

We define E0 and Eb the same as in the proof of Corollary 4.9. Then Assumptions 1 and 2 are

satisfied as been proven for Corollary 4.9. As for Assumption 5, we have shown that under

the condition that κ31(λ1/σ
2)3 = o(

√
n), the results (D.31) holds for any matrix A ∈ Rd×K

such that σmax(A)/σmin(A) ≤ C|λ1|/∆ and λK
(
Cov(A⊤E0P⊥ej)

)
≥ cn−1σ4

(
σmin(A)

)2
in

62



the proof of Corollary 4.9. Under the regime Lp≫ d, the leading term V(E0) = P⊥E0VΛ−1,

and by taking A = VΛ−1, it can be seen that

σmax(VΛ−1)/σmin(VΛ−1) = σmax(Λ)/σmin(Λ) ≤ |λ1|/∆,

and if we can show that η1(d) ≥ (2n)−1λ−2
1 σ4, we have λK(Σj) ≥ η1(d) = (2n)−1σ4

(
σmin(VΛ−1)

)2
and Assumption 5 is satisfied. Thus we only need to verify Assumption 4 and the conditions

for η1(d). Recall from the proof of Corollary 4.9 we have the following rates

r1(d) = (λ1 + σ2)

√
r

n
, r2(d) ≍

σ̃3
1K

δ2n
(log d)2,

and we can further derive that the following bounds hold with high probability

∥V̂ sgn(V̂⊤V)−V∥2,∞ ≤ ∥V̂ sgn(V̂⊤V)−V∥2 ≲ ∥E0∥2/∆ ≲ r1(d) log d/∆;

∥E0(V̂(V̂⊤V)−V)∥2,∞ ≲ ∥E0∥2∥V̂ sgn(V̂⊤V)−V∥2 ≲ r1(d)
2(log d)2/∆.

Thus we know r3(d) ≍ κ1 log d
√
r/n and r4(d) ≍ r1(d)

2(log d)2/∆ = κ1(λ1 + σ2)(log d)2r/n.

From the proof of Corollary 4.9, we know that Σj = n−1Λ−1V⊤Σ0
jVΛ−1, where

Σ0
j=
{
σ2∥P⊥ej∥22Σ+3σ4P⊥eje

⊤
j P⊥−2σ4ρ∥P⊥ej∥2

[
(P⊥)[:,S]uK+1e

⊤
jP⊥+P⊥ej(uK+1)

⊤(P⊥)[S,:]
]}
.

Similar as in the proof of Corollary 4.9, we will first define Σ′
j as following

Σ′
j =

1

n
Λ−1V⊤

{
σ2Σ+ 3σ4eje

⊤
j − 2σ4ρ∥P⊥ej∥2

(
(Id)[:,S]uK+1e

⊤
j + eju

⊤
K+1(Id)[S,:]

)}
VΛ−1.
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Then following similar arguments as in the proof of Corollary 4.9, we have that

∥Σj −Σ′
j∥2 = O

(Kσ4

n∆2

√
µ

d

)
= O

(Kλ21
∆2

√
µ

d

) σ4

nλ21
= o
( σ4

nλ21

)
.

Besides, under the condition that µ2κ41K
3 ≪ d2 we have

∥Σ′
j − Σ̃j∥2 ≲

√
Kσ4

n∆2
∥V∥22,∞ ≲

µK
√
Kσ4

dn∆2
= O

(
µκ21K

√
K

d

)
σ4

nλ21
= o
( σ4

nλ21

)
.

Then we know that λK
(
Σj

)
≥ σ4

2nλ21
+ σ2

2nλ1
and we can take η1(d) =

σ4

2nλ21
+ σ2

2nλ1
. Thus

Assumption 5 holds. Then by plugging in the above rates, we can derive the rate r(d) as

r(d) =

√
Kd

pL

r1(d)

∆
+ r3(d)r1(d)/∆+

√
µK

d
r1(d)

2/∆2 +
(
r2(d) + r4(d)

)
/∆

≲ κ1

√
Kdr

npL
+
κ21(log d)

2r

n
+
σ̃3
1K

δ2n∆
(log d)2.

Then under the condition that L ≫ Kdr
p
κ21(

λ1
σ2 ), n ≫ κ41(log d)

4r2(λ1
σ2 ) and K( σ̃1

δ
)2 ≪ κ1r,

we have η1(d)
−1/2r(d) = o(1), and hence the condition for η1(d) is satisfied and (6) holds.

Also recall from the above proof that ∥Σ̃j −Σj∥2 = o
(
λK(Σj)

)
, and (7) holds.

Now we verify the validity of Σ̂j. Similar as in the proof of Corollary 4.9, it suffices to

show that ∥Σ̂j −HΣ̃jH
⊤∥2 = oP

(
λK(Σ̃j)

)
, and the results will hold by Slutsky’s Theorem.

From proof of Corollary 4.9, we have

∥Σ̂tr −VΛV⊤∥2 = OP

(
(λ1 + σ2)

√
r

n

)
.
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Also, we know that with high probability

∥ṼF −VH⊤∥2 = ∥ṼFH−V∥2 ≲

√
Kd

∆2pL
r1(d) log d+ r1(d) log d/∆

≲ r1(d) log d/∆ ≲ κ1 log d

√
r

n
.

Then we have

∥Λ̃−HΛH⊤∥2 ≤ ∥ṼF⊤(Σ̂tr −VΛV⊤)ṼF∥2 + ∥(ṼF −VH⊤)⊤(VΛV⊤)ṼF∥2

+ ∥HV⊤(VΛV⊤)(ṼF −VH⊤)∥2 = OP

(
λ1κ1 log d

√
r

n

)
.

Then if we denoteDΛ = (Λ̃−HΛH⊤)HΛ−1H⊤, we have that ∥DΛ∥2 = OP (κ
2
1 log d

√
r
n
) =

oP (1), and thus we have

∥Λ̃−1 −HΛ−1H⊤∥2 = ∥(HΛH⊤ + Λ̃−HΛH⊤)−1 − (HΛH⊤)−1∥2

=
∥∥∥HΛ−1H⊤[(IK +DΛ)

−1 − IK
]∥∥∥

2
≤ ∥Λ−1∥2

∥∥ ∞∑
i=1

(−DΛ)
i
∥∥
2

= OP

(
κ21 log d

√
r

n

)
∆−1,

and furthermore, we have

∥Λ̃−2 −HΛ−2H⊤∥2 ≲ ∥Λ−1∥2∥Λ̃−1 −HΛ−1H⊤∥2 = OP

(
κ21 log d

√
r

n

)
∆−2.
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Then following basic algebra, under the condition that n≫ κ41(log d)
4r2(λ1/σ

2)2 we have

∥HΣ̃jH
⊤ − Σ̂j∥2 =

1

n
∥H(σ2Λ−1 + σ4Λ−2)H⊤ − (σ̂2Λ̃−1 + σ̂4Λ̃−2)∥2

≤ 1

n

(
∥σ2HΛ−1H⊤ − σ̂2Λ̃−1∥2 + ∥σ4HΛ−2H⊤ − σ̂4Λ̃−2∥2

)
= OP

(
κ21 log d

σ2

n∆

√
r

n

)
+OP

(
σ̃1
n∆

√
K

n

)
+OP

(
κ21 log d

σ4

n∆2

√
r

n

)
+OP

(
σ̃1σ

2

n∆2

√
K

n

)

= OP

(
κ21 log d

(∆
σ2

)√ r

n

) σ4

n∆2
= OP

(
κ21 log d

(λ1
σ2

)(λ1
∆

)√ r

n

) σ4

nλ21

= OP

(
κ31 log d

(λ1
σ2

)√ r

n

) σ4

nλ21
= oP

(
λK(Σ̃j)

)
.

Therefore, by Slutsky’s Theorem, the claim follows.

D.11 Proof of Corollary 4.7

From the proof of Corollary 4.10, we have verified Assumptions 1-3. It can be checked that

VΛ−1 satisfies the two conditions for the general CLT results in the proof of Corollary 4.10,

then under the condition that ∆2
0 ≪ n4/3/(µ2

θd), Assumption 5 is also satisfied.

Now we move on to check the conditions for η1(d). Recall from the proof of Corollary 4.10,

we have

Cov(E0P⊥ej) = ∥P⊥ej∥22(FΘ⊤ΘF⊤ + nId) +nP⊥eje
⊤
j P⊥.

Then we have

∥Σ̃j −Σj∥2 ≲
K

d∆2
(n+∆) ≲ O

(
K

dn
(n+∆)

)
n

λ21
= o

(
n

λ21

)
.

Besides, it can be seen that λK(Σ̃j) ≥ n/λ21 + 1/λ1, and hence we can take η1(d) =

λ−2
1 n/2 + λ−1

1 /2. Next we move on to verify the statistical rates r3(d) and r4(d). By

66



Davis-Kahan’s Theorem (Yu et al., 2015), we have that with high probability

∥V̂ sgn(V̂⊤V)−V∥2,∞ ≤ ∥V̂ sgn(V̂⊤V)−V∥2 ≲ ∥E∥2/∆ ≲ r′1(d)/∆,

where r′1(d) = d∆0/
√
K +

√
dn log d as defined in the proof of Corollary 4.10, and thus we

know that r3(d) ≍ r′1(d)/∆. Besides, with high probability we have

∥E0(V̂(V̂⊤V)−V)∥2,∞ ≤ ∥E0(V̂(V̂⊤V)−V)∥2 ≲ r′1(d)
2/∆,

and we have r4(d) ≍ r′1(d)
2/∆. Thus Assumption 4 is satisfied. Then we have

r(d) =

√
Kd

pL

r1(d)

∆
+ r3(d)r1(d)/∆+

√
K

d
r1(d)

2/∆2 +
(
r2(d) + r4(d)

)
/∆

≲

√
Kd

pL

r1(d)

∆
+ r′1(d)

2/∆2 ≲
K

∆2
0

+
K2n(log d)2

d∆4
0

+

√
Kd

pL

(√K
∆0

+
K
√
n√

d∆2
0

)
.

Therefore, under the conditions that ∆2
0 ≫ K

√
n(log d)2, n ≫ d2 and L ≫ Kd2/p, we

have η1(d)
−1/2r(d) = o(1). Thus by Theorem 4.5, (6) holds. As for (9), from the above

arguments we have ∥Σ̃j −Σj∥2 = o
(
λK(Σj)

)
, and hence (9) holds.

Now we need to check the validity of Σ̂j. Similar as before, it suffices for us to prove

that ∥Σ̂j − HΣ̃jH
⊤∥2 = oP

(
λK(Σ̃j)

)
. From Corollary 4.7, we have that ∥M̂ − M∥2 =

OP (d∆0/
√
K +

√
dn) and ∥ṼFH−V∥2 = ∥ṼF −VH⊤∥2 = OP

(
K
√

n
d
/∆2

0

)
. Then we have

∥Λ̃−HΛH⊤∥2 ≤ ∥ṼF⊤(M̂−M)ṼF∥2 + ∥(ṼF −VH⊤)⊤MṼF∥2

+ ∥HV⊤M(ṼF −VH⊤)∥2 = OP

(
d∆0/

√
K +

√
dn
)
.
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Then if we denote DΛ = (Λ̃−HΛH⊤)HΛ−1H⊤, we have that

∥DΛ∥2 = OP

(
K

√
n

d
∆−2

0

)
= oP (1),

and thus we have

∥Λ̃−1 −HΛ−1H⊤∥2 ≲ ∥Λ−1∥2∥DΛ∥2 = OP

(
K

√
n

d
∆−2

0

)
∆−1 = oP (n/λ

2
1) = oP

(
λK(Σ̃j)

)
,

and furthermore, we have

n∥Λ̃−2−HΛ−2H⊤∥2≲n∥Λ−1∥2∥Λ̃−1−HΛ−1H⊤∥2=OP

(
K

√
n

d
/∆2

0

)
n∆−2=oP

(
λK(Σ̃j)

)
.

Combining the above results, we have ∥Σ̂j −HΣ̃jH
⊤∥2 = oP

(
λK(Σ̃j)

)
, and hence (9) holds

with Σ̃j replaced by Σ̂j.

D.12 Proof of Corollary A.3

The proof for the case where no self-loops are present is almost identical to the case where

there are self-loops except for some modifications. We will first prove the results for the

case when self-loops are present, then in the end we will discuss how to modify the proof

for the case where self-loops are absent.

We only need to verify that Assumptions 1 to 5 hold. Recall from the proof of Corol-

lary A.1 that we have ∥∥E∥2∥ψ1 ≲ r1(d) =
√
dθ, and thus we know that Assumption 1

is satisfied. Also Assumption 2 holds trivially due to the unbiasedness of E. We will

then verify Assumption 3 holds under the model. We know that ΘΠ and V share the

same column space, and thus there exists a non-singular matrix C ∈ RK×K such that
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ΘΠ = VC and V = ΘΠC−1. Then we can see that σmin(C) = σmin(ΘΠ) ≳
√
dθ/K, and

∥C−1∥2 ≲
√
K/dθ. Hence we have ∥V∥2,∞ ≤ ∥ΘΠ∥2,∞∥C−1∥2 ≲

√
θ
√
K/dθ =

√
K/d.

Thus we can see that Assumption 3 is satisfied with µ = O(1).

Now we move on to verify Assumption 4. Recall from the proof of Corollary A.1 that

∆ ≳ dθ/K, ∥M∥2 ≲ Kdθ, Mij ≍ θ and maxij E(E2
ij) ≲ θ. By Theorem 4.2.1 in Chen et al.

(2021), we have that with probability 1−O(d−5),

∥V̂ sgn(V̂⊤V)−V∥2,∞ ≲
K3

√
K +K

√
K log d

d
√
θ

, r3(d) ≍
K3

√
K +K

√
K log d

d
√
θ

,

and by the proof of Theorem 4.2.1 in Chen et al. (2021), we further have that with probability

1−O(d−7),

∥E(V̂(V̂⊤V)−V)∥2,∞ ≲
K
√
Kθ log d

dθ
∥E∥2+r3(d)(log d+

√
dθ)

≲ r3(d)(log d+
√
dθ) +K

√
K log d/d

≲
K3

√
K +K

√
K log d√

d
, r4(d) ≍

K3
√
K +K

√
K log d√

d
.

Thus Assumption 4 is met and now we move on to study the order of η1(d). Before we

continue with the proof, we state the following elementary lemma that helps study the

operator norm of a covariance matrix.

Lemma D.5. x1,x2 ∈ Rd are two random vectors, then we have

∥Cov(x1,x2)∥2 = ∥Cov(x2,x1)∥2 ≤
√

∥Cov(x1)∥2∥Cov(x2)∥2,

and

∥Cov(x1 + x2)∥2 ≤ 2∥Cov(x1)∥2 + 2∥Cov(x2)∥2.
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The proof of Lemma D.5 can be found in Supplementary Materials E.4. With the help

of Lemma D.5, we first decompose E = E1 + E2, where E1 = [EijI{i ≤ j}] is composed of

the diagonal and upper triangular entries of E and E2 = [EijI{i > j}] is composed of the

off-diagonal lower triangular entries of E. Then it can be seen that both E1 and E2 have

independent entries. Now for j ∈ [d], we can write

EP⊥ej = Eej − EVV⊤ej = Eej − (E1VV⊤ej + E2VV⊤ej).

Then we study the covariance of the three terms separately. We have

Cov(Eej) = Cov(E.j) = diag
(
M1j(1−M1j), . . . ,Mdj(1−Mdj)

)
;

Cov(E1VV⊤ej) = diag
([ d∑

k=1

Mik(1−Mik)(PVej)
2
kI{i ≤ k}

]d
i=1

)
;

Cov(E2VV⊤ej) = diag
([ d∑

k=1

Mik(1−Mik)(PVej)
2
kI{i > k}

]d
i=1

)
.

Then we have θ ≲ λd
(
Cov(Eej)

)
≤ ∥Cov(Eej)∥2 ≤ maxij E(E2

ij) ≲ θ and

∥Cov(E1VV⊤ej)∥2 ≤ max
i∈[d]

d∑
k=1

Mik(1−Mik)(PVej)
2
kI{i ≤ k}

≤ max
ik

E(Eik)
2

d∑
k=1

(PVej)
2
k ≲ θ∥PVej∥22 ≤ θ∥V∥22,∞ ≤ θK

d
,

and very similarly we also have ∥Cov(E2VV⊤ej)∥2 ≲ θK/d. Thus by Lemma D.5, we know

that ∥Cov(E1VV⊤ej + E2VV⊤ej)∥2 ≲ θK/d and

∥Cov(E1VV⊤ej + E2VV⊤ej,Eej)∥2 ≲
√
θ2K/d = θ

√
K/d.
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Therefore, we can write

∥Cov(EP⊥ej)− Cov(Eej)∥2 ≤ 2∥Cov(E1VV⊤ej + E2VV⊤ej,Eej)∥2

+ ∥Cov(E1VV⊤ej + E2VV⊤ej)∥2 ≲ θ
√
K/d.

Thus we have λd
(
Cov(EP⊥ej)

)
≥ λd

(
Cov(Eej)

)
− ∥Cov(EP⊥ej)− Cov(Eej)∥2 ≳ θ, and

we have η1(d) ≍ λ−2
1 θ. Therefore, when θ = K2d−1/2+ϵ for some constant ϵ > 0, p = Ω(

√
d)

and L≫ K5d2/p, K = o(d1/18), we have that

r(d) = ∆−1
(√Kd

pL
r1(d) + r3(d)r1(d) +

√
µK

d∆2
r1(d)

2 + r2(d) + r4(d)
)

≲
K4

√
K +K2

√
K log d

d3/2θ
+K

√
K

θpL
≪ 1

Kd
√
θ
≲ η1(d)

1/2.

Thus η1(d)
−1/2r(d) = o(1) and the condition for the asymptotic covariance matrix is satisfied.

Now we need to verify Assumption 5, and similar as in the proof of Corollary 4.9, we can

verify the following more general result.

Given j ∈ [d], for any matrix A ∈ Rd×K that satisfies the following two condi-

tions: (1)∥A∥2,∞/σmin(A) ≤ C
√
λ21µK/(d∆

2); (2) λK
(
Σj

)
≥ cθ

(
σmin(A)

)2
, where Σj :=

Cov(A⊤E0P⊥ej) and C, c > 0 are fixed constants independent of A, it holds that

Σ
−1/2
j A⊤E0P⊥ej

d→ N (0, IK). (D.32)

It can be checked from the previous proof that A = VΛ−1 satisfies the two conditions. To

show (D.32), we need to show that a⊤Σ
−1/2
j A⊤EP⊥ej

d→ N (0, 1) for any a ∈ RK , ∥a∥2 = 1.

71



We will first study the entries of P⊥ej and AΣ
−1/2
j a. It holds that

|(P⊥ej)j| = |
(
(Id −VV⊤)ej

)
j
| ≤ 1 + ∥V∥22,∞ = 1 + o(1);

max
i ̸=j

|(P⊥ej)i| = max
i ̸=j

|e⊤i ej − e⊤i VV⊤ej| ≤ 0 + ∥V∥22,∞ =
K

d
;

∥AΣ
−1/2
j a∥∞ ≤ ∥A∥2,∞∥Σ−1/2

j ∥2 ≲ θ−1/2∥A∥2,∞/σmin(A) ≲ K2

√
K

dθ
.

Then we know that

a⊤Σ
−1/2
j A⊤EP⊥ej =

∑
ik

Eik(AΣ
−1/2
j a)i(P⊥ej)k =

d∑
i=1

Eii(AΣ
−1/2
j a)i(P⊥ej)i

+
∑
i<k

Eik

[
(AΣ

−1/2
j a)i(P⊥ej)k + (AΣ

−1/2
j a)k(P⊥ej)i

]
.

Then for the diagonal entries we have

d∑
i=1

E|Eii(AΣ
−1/2
j a)i(P⊥ej)i|3

= E|Ejj(AΣ
−1/2
j a)j(P⊥ej)j|3 +

∑
i ̸=j

E|Eii(AΣ
−1/2
j a)i(P⊥ej)i|3

≲ θ∥AΣ
−1/2
j a∥3∞ + dθ∥AΣ

−1/2
j a∥3∞ max

i ̸=j
|(P⊥ej)i|3 ≲

K6

d

√
K3

dθ
,

and for the off-diagonal entries, when K = o(d1/26) it holds that

∑
i<k

E
∣∣∣Eik

[
(AΣ

−1/2
j a)i(P⊥ej)k + (AΣ

−1/2
j a)k(P⊥ej)i

]∣∣∣3 ≲ dθ∥AΣ
−1/2
j a∥3∞

+ d2θ∥AΣ
−1/2
j a∥3∞

(K
d

)3
≲ K6

√
K3

dθ
= o(1).

Moreover, since Var(a⊤Σ
−1/2
j A⊤EP⊥ej) = 1, by the Lyapunov’s condition and plugging in

A = VΛ−1, Assumption 5 is met and (6) follows.
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Now we only need to verify that the result also holds when replacing Σj by Σ̃j. From

previous discussion we learnt that

∥Σ̃j −Σj∥2 ≤ ∥VΛ−1∥22∥Cov(EP⊥ej)− Cov(Eej)∥2

≤ K2

d2θ

√
K

d
≲ K4

√
K

d
λK(Σ̃j) = o(λK(Σ̃j)).

Then by Slutsky’s Theorem, (A.18) holds.

Now we verify the validity of Σ̂j . Similar as in the proof of Corollary 4.6, H is orthonormal

with probability 1−o(1), and we will start by showing that ∥Σ̂j−HΣ̃jH
⊤∥2 = oP

(
λK(Σ̃j)

)
.

From previous discussion we have the following bounds

∥M̂−M∥2 = OP (
√
dθ), ∥ṼF −VH⊤∥2 = ∥ṼFH−V∥2 = OP (

K√
dθ

),

and

∥ṼFH−V∥2,∞ ≤ ∥ṼFH− V̂H0∥2 + ∥V̂H0 −V∥2,∞ = oP (
1

Kd
√
θ
)

+OP (
K3

√
K +K

√
K log d

d
√
θ

) = OP (
K3

√
K +K

√
K log d

d
√
θ

).

With the help of the above results, we will study the components of Σ̂j−HΣ̃jH
⊤ separately.

In the following proof, we will base the discussion on the event that H is orthonormal. We

first study M̃ = (ṼFṼF⊤)M̂(ṼFṼF⊤) = ṼFH(H⊤ṼF⊤M̂ṼFH)H⊤ṼF⊤. We have that

∥H⊤ṼF⊤M̂ṼFH−Λ∥2 ≤ ∥H⊤ṼF⊤M̂ṼFH−H⊤ṼF⊤MṼFH∥2

+ ∥H⊤ṼF⊤M(ṼFH−V)∥2 + ∥(ṼFH−V)⊤MV∥2

≤ ∥M̂−M∥2 + 2∥M∥2∥ṼFH−V∥2 = OP (K
2
√
dθ).

73



Then for i, k ∈ [d], we have

|M̃ik −Mik| = |(ṼFH)⊤i (H
⊤ṼF⊤M̂ṼFH)(ṼFH)k −Mik|

≤ |(ṼFH)⊤i (H
⊤ṼF⊤M̂ṼFH−Λ)(ṼFH)k|+ |(ṼFH−V)iΛ(ṼFH)k|

+ |(V)iΛ(ṼFH−V)k|.

It is not hard to see that

|(ṼFH)⊤i (H
⊤ṼF⊤M̂ṼFH−Λ)(ṼFH)k| ≲ ∥H⊤ṼF⊤M̂ṼFH−Λ∥2∥ṼFH∥22,∞

= OP (K
2
√
dθ∥ṼFH∥22,∞) = OP

(
K3

√
θ

d

)
,

|(ṼFH−V)iΛ(ṼFH)k|+ |(V)iΛ(ṼFH−V)k|

= OP (Kdθ∥V∥2,∞∥V̂H0 −V∥2,∞) = OP

(
K3(K2 +

√
log d)

√
θ

d

)
,

and in turn we have the upper bound

|M̃ik −Mik| = OP

(
K3

√
θ

d

)
+OP

(
K3(K2 +

√
log d)

√
θ

d

)

= OP

(K3(K2 +
√
log d)√

dθ

)
θ = oP (θ) = oP (Mik).

Thus we have

∥ diag
(
[M̃ij(1− M̃ij)]

d
i=1

)
− diag

(
[Mij(1−Mij)]

d
i=1

)
∥2 = OP

(K3(K2 +
√
log d)√

dθ
θ
)
.
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Then we move on to study Λ̃. We have

∥Λ̃−HΛH⊤∥2 ≤ ∥ṼF⊤(M̂−M)ṼF∥2 + ∥(ṼF −VH⊤)⊤MṼF∥2

+ ∥HV⊤M(ṼF −VH⊤)∥2 = OP (
√
dθ) +OP (K

2
√
dθ) = OP (K

2
√
dθ).

Then if we denote DΛ = (Λ̃−HΛH⊤)HΛ−1H⊤, we have that ∥DΛ∥2 = OP (K
3/
√
dθ) =

oP (1), and thus we have

∥Λ̃−1 −HΛ−1H⊤∥2 = ∥(HΛH⊤ + Λ̃−HΛH⊤)−1 − (HΛH⊤)−1∥2

=
∥∥∥HΛ−1H⊤[(IK +DΛ)

−1 − IK
]∥∥∥ ≤ ∥Λ−1∥2

∥∥ ∞∑
i=1

(−DΛ)
i
∥∥
2

= OP

(
K4/(dθ)3/2

)
.

Thus, following basic algebra we have the following bounds

∥ṼF⊤ diag
(
[M̃ij(1− M̃ij)]

d
i=1

)
ṼF −HV⊤ diag

(
[Mij(1−Mij)]

d
i=1

)
VH⊤∥2

≤ ∥ṼF⊤
(
diag

(
[M̃ij(1− M̃ij)]

d
i=1

)
− diag

(
[Mij(1−Mij)]

d
i=1

))
ṼF∥2

+ 2∥ṼF −VH⊤∥2∥ diag
(
[Mij(1−Mij)]

d
i=1

)
∥2 = OP

(K3(K2 +
√
log d)√

dθ

)
θ,

and further, under the condition that K = o(d1/32), we have

∥Σ̂j −HΣ̃jH
⊤∥2 ≲ OP

(K3(K2 +
√
log d)√

dθ
θ
)
∥Λ̃−1∥22 + θ∥Λ−1∥2∥Λ̃−1 −HΛ−1H⊤∥2

= OP

(K7(K2 +
√
log d)√

dθ

) 1

K2d2θ
+OP (

K7

√
dθ

)
1

K2d2θ

= OP

(K7(K2 +
√
log d)√

dθ

) 1

K2d2θ
= oP

(
λK(Σ̃j)

)
.
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Thus with similar arguments as in the proof of Corollary 4.6, the claim follows.

Remark 17. The inferential results also hold for the case where self-loops are absent. Recall

that under the no-self-loop case, the observed matrix is

M̂ = X− diag(X) = M+ E− diag(M+ E) = M+ E− diag(E)− diag(M),

where E = X−M is the error matrix between the adjacency matrix with self-loops and its

expectation. We define M̂′ = M+E−diag(E) and denote by V̂′ its K leading eigenvectors.

By Weyl’s inequality (Franklin, 2012) we know that with probability at least 1 − d−10

we have that σK(M̂
′) − σK+1(M̂

′) ≥ ∆ − O(
√
dθ) ≳ dθ/K, and hence by Davis-Kahan’s

Theorem (Yu et al., 2015) we have

∥V̂V̂⊤ − V̂′V̂′⊤∥2 ≤ ∥ diag(M)∥2/
(
σK(M̂

′)− σK+1(M̂
′)
)
≲ K/d,

with probability at least 1−d−10. The verification of Assumptions 1, 3 and 5 when self-loops

are present can also be applied to the no-self-loop case. For Assumption 2, we can take

E0 = E − diag(E) and Eb = − diag(M). Then r2(d) = ∥ diag(M)∥2 ≲ θ = o(r1(d)) and

Assumption 2 is satisfied. As for Assumption 4, by Lemma 7 in Fan et al. (2019), we have

∥ sgn(V̂′⊤V)− V̂′⊤V∥2 ≲ ∥V̂′V̂′⊤ −VV⊤∥22 ≲
K2

dθ
,

∥ sgn(V̂⊤V̂′)− V̂⊤V̂′∥2 ≲ ∥V̂V̂⊤ − V̂′V̂′⊤∥22 ≲
K2

d2
.

With similar arguments as in the self-loop case, for V̂′ with high probability we have

∥V̂′ sgn(V̂′⊤V)−V∥2,∞ ≲
K3

√
K +K

√
K log d

d
√
θ

,
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∥E0(V̂
′(V̂′⊤V)−V)∥2,∞ ≲

K3
√
K +K

√
K log d√

d
.

Then for V̂, with high probability we have that

∥V̂ sgn(V̂⊤V)−V∥2,∞ ≤ ∥V̂(V̂⊤V)−V∥2,∞ + ∥V̂
(
sgn(V̂⊤V)− V̂⊤V

)
−V∥2,∞

≤ ∥V̂
(
V̂⊤(Id − V̂′V̂′⊤)V

)
−V∥2,∞ + ∥V̂(V̂⊤V̂′V̂′⊤V)−V∥2,∞ +O(

K2

dθ
)∥V̂∥2,∞

≤ ∥V̂(V̂⊤V̂′)−V̂′∥2,∞+∥V̂′(V̂′⊤V)−V∥2,∞+O(
K2

dθ
)∥V̂∥2,∞+∥V̂V̂⊤−V̂′V̂′⊤∥2∥V̂∥2,∞

≤ O(
K2

dθ
)
(
∥V∥2,∞+∥V̂ sgn(V̂⊤V)−V∥2,∞

)
+∥V̂V̂⊤−V̂′V̂′⊤∥2+∥V̂′(V̂′⊤V)−V∥2,∞,

where in the last two inequalities we use the fact that

∥(Id − V̂V̂⊤)V̂′∥2 = ∥(Id − V̂′V̂′⊤)V̂∥2 = ∥V̂⊤
⊥V̂

′∥2 = ∥V̂′⊤
⊥ V̂∥2 = ∥V̂V̂⊤ − V̂′V̂′⊤∥2,

with V̂⊥ and V̂′
⊥ being the orthogonal complement of V̂ and V̂′ respectively. Since

K2/(dθ) = o(1), for large enough d we further get

1

2
∥V̂ sgn(V̂⊤V)−V∥2,∞ ≤

(
1−O

(
K2/(dθ)

))
∥V̂ sgn(V̂⊤V)−V∥2,∞

≤ O(
K2

dθ
)∥V∥2,∞ +O(

K

d
) + ∥V̂′ sgn(V̂′⊤V)−V∥2,∞ +O(

K2

dθ
)∥V̂′∥2,∞

≲
K2

dθ

√
K

d
+
K

d
+
K3

√
K +K

√
K log d

d
√
θ

≲
K3

√
K +K

√
K log d

d
√
θ

.

Hence r3(d) = K
√
K(K2 +

√
log d)/(d

√
θ). We also have

∥E(V̂(V̂⊤V)−V)∥2,∞ ≲ ∥E0(V̂(V̂⊤V)−V)∥2,∞ +
r2(d)r1(d)

∆

≲ ∥E0(V̂
′(V̂′⊤V)−V)∥2,∞ +

r2(d)r1(d)

∆

≲
K3

√
K +K

√
K log d√

d
+K

√
θ

d
≲
K3

√
K +K

√
K log d√

d
,
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and hence we can take r4(d) = K
√
K(K2 +

√
log d)/

√
d. Now to get a sharper rate for r(d),

we take into consideration the diagonal structure of Eb and derive the following bound

∥P⊥EbV̂Ĥ0Λ
−1∥2,∞ ≤ ∥VV⊤EbV̂Ĥ0Λ

−1∥2,∞ + ∥EbV̂Ĥ0Λ
−1∥2,∞

≤ r2(d)∥V∥2,∞
∆

+
∥ diag(M)V̂∥2,∞

∆

≲
K

d

√
K

d
+

∥ diag(M)∥2∥V̂∥2,∞
∆

≲
K

d

√
K

d
.

Then from the proof of Theorem 4.5 we have that

r(d) ≲
K4

√
K +K2

√
K log d

d3/2θ
+K

√
K

θpL
+
K

d

√
K

d
≪ 1

Kd
√
θ
,

and we are only left to verify the minimum eigenvalue condition of Σj by showing that the

order of η1(d) is the same as when there are self-loops. With the same arguments, we know

that

∥Cov(Λ−1V⊤E′P⊥ej)− Cov(Λ−1V⊤E′ej)∥ ≤ O

(
K4

√
K

d

)
1

K2d2θ
.

Besides, we also have

∥Cov(Λ−1V⊤E′ej)− Σ̃j∥2 =
∥∥Λ−1V⊤(Mjj(1−Mjj)eje

⊤
j

)
VΛ−1

∥∥
2

≲ Mjj∥Λ−1∥22∥V∥22,∞ ≲
K2

d2θ

K

d
= O(

K5

d
)

1

K2d2θ
= o
(
λK(Σ̃j)

)
.

Thus we also have ∥Cov(Λ−1V⊤E′P⊥ej)− Σ̃j∥2 = o
(
λK(Σ̃j)

)
, and thereby

λK
(
Cov(Λ−1V⊤E′P⊥ej)

)
= λK

(
Σ̃j

)(
1 + o(1)

)
≳

θ

K2d2θ2
.

Thus we still have η1(d) = λ−2
1 θ for the case where self-loops are absent. The condition for
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η1(d) also holds for the no-self-loop case and both (6) and (A.18) hold. The verification of

(A.19) is almost identical to the self-loop case and is hence omitted.

D.13 Proof of Corollary A.4

Recall that M̂ = (1/θ̂)PS(M + Ē) and M̂′ = (1/θ)PS(M + Ē) share exactly the same

sequence of eigenvectors, and we can treat ṼF as the FADI estimator applied to M̂′. We

will abuse the notation and denote E := M̂′ −M.

To show that (6) holds, we need to verify that Assumptions 1 to 5 hold and the minimum

eigenvalue conditions hold for the asymptotic covariance matrix. We know from Corollary A.1

that Assumption 1 and Assumption 2 are satisfied, and that r1(d) = |λ1|µK/
√
dθ+

√
dσ2/θ

and r2(d) = 0. Define σ̃ = (|λ1|µK/d) ∨ σ, we have from the proof of Corollary A.1 that

Var(Eij) ≍ σ̃2/θ and |Eij| = O(σ̃ log d/θ) for i, j ∈ [d]. From Theorem 4.2.1 in Chen et al.

(2021), we have that with probability 1−O(d−5)

∥V̂ sgn(V̂⊤V)−V∥2,∞ ≲
κ2σ̃
√
µK/θ + σ̃

√
K log d/θ

∆
,

and thus we know r3(d) ≍
(
κ2σ̃
√
µK/θ + σ̃

√
K log d/θ

)
/∆. Besides, by the proof of

Theorem 4.2.1 in Chen et al. (2021), with probability 1−O(d−7), we have

∥∥E(V̂(V̂⊤V)−V
)∥∥

2,∞≲

√
dKσ̃2

∆θ

(√
log d+

√
µ
)
+σ̃

√
d

θ
r3(d)+

σ̃

∆

√
K

log d

θ
∥E∥2

≲

√
dσ̃2

∆θ

(√
K log d+ κ2

√
µK
)
,
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and thus r4(d) ≍
√
dσ̃2

∆θ

(√
K log d+ κ2

√
µK
)
. Therefore, Assumption 4 is met and we have

r(d) =

√
Kd

pL

r1(d)

∆
+ r3(d)r1(d)/∆+

√
µK

d
r1(d)

2/∆2 +
(
r2(d) + r4(d)

)
/∆

≲

(√
dσ̃

∆
√
θ

)((
κ2
√
µK +

√
K log d

∆

)
σ̃√
θ
+

√
Kd

pL

)
.

Now we will study the statistical rate η1(d). We know that Eij = Eji are i.i.d.

across i ≤ j and Var(Eij) ≍ σ̃2/θ, then by Lemma D.5, with almost identical ar-

guments as in the proof of Corollary A.3, for j ∈ [d] we have that ∥Cov(EP⊥ej) −

Cov(Eej)∥2 ≲ σ̃2/θ
√
µK/d, and thus λd

(
Cov(EP⊥ej)

)
≳ λd

(
Cov(Eej)

)
≳ σ̃2/θ and

we have η1(d) ≍ λ−2
1 θ−1σ̃2. Therefore, under the condition that L ≫ κ22Kd

2/p and

σ̃/∆
√
d/θ ≪ min

((
κ22
√
µK + κ2

√
K log d

)−1
,
√
p/d
)
, we have that η1(d)

−1/2r(d) = o(1).

Now we move on to verify Assumption 5. More specifically, we will show that the

following results hold:

Given j ∈ [d], for any matrix A ∈ Rd×K that satisfies the following two conditions:

(1)∥A∥2,∞/σmin(A) ≤ C
√
λ21µK/(d∆

2); (2) λK
(
Σj

)
≥ cσ̃2θ−1

(
σmin(A)

)2
, where Σj :=

Cov(A⊤E0P⊥ej) and C, c > 0 are fixed constants independent of A, it holds that

Σ
−1/2
j A⊤E0P⊥ej

d→ N (0, IK). (D.33)

To prove (D.33), it suffices to show that a⊤Σ
−1/2
j A⊤EP⊥ej

d→ N (0, 1) for any a ∈
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RK , ∥a∥2 = 1. We will first study P⊥ej, AΣ
−1/2
j a and maxik E|Eik|3. It holds that

|(P⊥ej)j| = |
(
(Id −VV⊤)ej

)
j
| ≤ 1 + ∥V∥22,∞ = 1 + o(1);

max
i ̸=j

|(P⊥ej)i| = max
i ̸=j

|e⊤i ej − e⊤i VV⊤ej| ≤ 0 + ∥V∥22,∞ =
µK

d
;

∥AΣ
−1/2
j a∥∞ ≤ ∥A∥2,∞∥Σ−1/2

j ∥2 ≲ (σ̃2/θ)−1/2∥A∥2,∞/σmin(A) ≲ κ2

√
µK

d

√
θ

σ̃
;

max
ik

E|Eik|3 ≲
∥M∥3max

θ3
θ +

σ3(log d)3

θ3
θ ≲

σ̃3

θ2
(log d)3.

Then we know that

a⊤Σ
−1/2
j A⊤EP⊥ej =

∑
ik

Eik(AΣ
−1/2
j a)i(P⊥ej)k =

d∑
i=1

Eii(AΣ
−1/2
j a)i(P⊥ej)i

+
∑
i<k

Eik

[
(AΣ

−1/2
j a)i(P⊥ej)k + (AΣ

−1/2
j a)k(P⊥ej)i

]
.

Then for the diagonal entries we have

d∑
i=1

E|Eii(AΣ
−1/2
j a)i(P⊥ej)i|3

= E|Ejj(AΣ
−1/2
j a)j(P⊥ej)j|3 +

∑
i ̸=j

E|Eii(AΣ
−1/2
j a)i(P⊥ej)i|3

≲ E|Ejj|3∥AΣ
−1/2
j a∥3∞ + dmax

i
E|Eii|3∥AΣ

−1/2
j a∥3∞ max

i ̸=j
|(P⊥ej)i|3

≲
κ32Kµ

d

√
µK

dθ
(log d)3,

and for the off-diagonal entries, under the condition κ62K
3µ3 = o(d1/2) it holds that

∑
i<k

E
∣∣∣Eik

[
(AΣ

−1/2
j a)i(P⊥ej)k + (AΣ

−1/2
j a)k(P⊥ej)i

]∣∣∣3 ≲ d
σ̃3

θ2
∥AΣ

−1/2
j a∥3∞(log d)3

+ d2
σ̃3

θ2
(log d)3∥AΣ

−1/2
j a∥3∞

(µK
d

)3
≲ κ32Kµ

√
µK

dθ
(log d)3 = o(1).
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Moreover, since Var(a⊤Σ
−1/2
j A⊤EP⊥ej) = 1, by the Lyapunov’s condition, (D.33) holds

and Assumption 5 is satisfied by plugging in A = VΛ−1. By Theorem 4.5, we have that (6)

follows.

To show that (A.20) holds we need to show that ∥Σ̃j − Σj∥2 = o(λK(Σ̃j)). From

previous discussion we learnt that

∥Σ̃i −Σj∥2 ≤ ∥VΛ−1∥22∥Cov(EP⊥ej)− Cov(Eej)∥2

≤ 1

∆2

√
µK

d

σ̃2

θ
≲ κ22

√
µK

d
λK(Σ̃j) = o(λK(Σ̃j)).

Then by Slutsky’s Theorem, (A.20) holds.

Last we verify that the distributional convergence still holds when we plug in the estimator

Σ̂j. Similar as in the previous proof, it suffices for us to prove that ∥Σ̂j −HΣ̃jH
⊤∥2 =

oP
(
λK(Σ̃j)

)
. In the following proof, we will base the discussion on the event that H is

orthonormal. We will first bound ∥M̃ − M∥max. From previous discussion we have the

following bounds

∥M̂′ −M∥2 = OP (
√
dσ̃2/θ), ∥ṼF −VH⊤∥2 = ∥ṼFH−V∥2 = OP (

1

∆

√
dσ̃2/θ),

and

∥ṼFH−V∥2,∞ ≤ ∥ṼFH− V̂H0∥2 + ∥V̂H0 −V∥2,∞ = oP (
σ̃

|λ1|
√
θ
)

+OP (
κ2σ̃
√
µK/θ + σ̃

√
K log d/θ

∆
) = OP (

κ2σ̃
√
µK/θ + σ̃

√
K log d/θ

∆
).

Now we can study M̃ = (ṼFṼF⊤)M̂(ṼFṼF⊤) = ṼFH( θ
θ̂
H⊤ṼF⊤M̂′ṼFH)H⊤ṼF⊤. Recall

by Hoeffding’s inequality (Hoeffding, 1994), with probability 1 − O(d−10) we have that
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|θ̂ − θ| ≲
√
log d
d

and |S| = Ω(d2θ), and we have that

∥θ
θ̂
H⊤ṼF⊤M̂′ṼFH−Λ∥2 ≤ ∥H⊤ṼF⊤M̂′ṼFH−H⊤ṼF⊤MṼFH∥2

+ ∥H⊤ṼF⊤M(ṼFH−V)∥2 + ∥(ṼFH−V)⊤MV∥2 +OP

(√log d

dθ
|λ1|
)

≲ ∥M̂′ −M∥2 + 2∥M∥2∥ṼFH−V∥2 +OP

(√log d

dθ
|λ1|
)
= OP (κ2

√
dσ̃2/θ).

Then for any i, k ∈ [d], we have

|M̃ik−Mik| = |(ṼFH)⊤i (
θ

θ̂
H⊤ṼF⊤M̂′ṼFH)(ṼFH)k −Mik|

≤ |(ṼFH)⊤i (
θ

θ̂
H⊤ṼF⊤M̂′ṼFH−Λ)(ṼFH)k|+ |(ṼFH−V)iΛ(ṼFH)k|

+ |(V)iΛ(ṼFH−V)k| = OP (κ2
√
dσ̃2/θ∥ṼFH∥22,∞)

+OP (|λ1|∥V∥2,∞∥V̂H0 −V∥2,∞) = OP (

√
dσ̃

∆
√
θ
)
|λ1|µK
d

= OP

(
κ2µK√
dθ

)
σ̃,

and in turn we have

|M̃2
ik−M2

ik| ≲
|λ1|µK
d

|M̃ik−Mik| = OP

(√
dσ̃

∆
√
θ

)( |λ1|µK
d

)2
, ∀i, k ∈ [d].

Now we move on to bound the error of σ̂2. We know from the setting of Example 4 that

εik’s are sub-Gaussian with variance proxy of order O(σ2(log d)2), and thus

|σ̂2−σ2|=
∣∣∣ ∑
(i,k)∈S

(Mik+εik−M̃ik)
2/|S|−σ2

∣∣∣= ∣∣∣ ∑
(i,k)∈S

(Mik+εik−Mik+Mik−M̃ik)
2/|S|−σ2

∣∣∣
≲
∣∣∣ 1|S| ∑

(i,k)∈S

ε2ik − σ2
∣∣∣+ ∥M̃−M∥2max = OP

(σ2(log d)2√
|S|

)
+OP

(κ22µ2K2

dθ

)
σ̃2

= OP

((log d)2
d
√
θ

)
σ2 +OP

(κ22µ2K2

dθ

)
σ̃2.
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Then for any i ∈ [d], we have that

∣∣∣M̃2
ij(1− θ̂)

θ̂
+
σ̂2

θ̂
−
M2

ij(1−θ)
θ

−σ2

θ

∣∣∣≲ |M̃ij|2
∣∣∣1
θ̂
− 1

θ

∣∣∣+ |M̃2
ij−M2

ij|
θ

+σ̂2
∣∣∣1
θ̂
− 1

θ

∣∣∣+ |σ̂2−σ2|
θ

= OP

(√
dσ̃

∆
√
θ

)
θ−1
( |λ1|µK

d

)2
+OP

((log d)2
d
√
θ

+
κ22µ

2K2

dθ

) σ̃2

θ
= OP

(√
dσ̃

∆
√
θ

)
σ̃2

θ
,

and thus we have that

∥ diag
(
[M̃2

ij(1− θ̂)/θ̂ + σ̂2/θ̂]di=1

)
− diag

(
[M2

ij(1− θ)/θ + σ2/θ]di=1

)
∥2 = OP

(√dσ̃
∆
√
θ

) σ̃2

θ
.

Also, we have shown that

∥Λ̃−HΛH⊤∥2 = ∥θ
θ̂
H⊤ṼF⊤M̂′ṼFH−Λ∥2 = OP

(
κ2

√
dσ̃

∆
√
θ

)
∆,

then we have ∥Λ̃−1 −HΛ−1H⊤∥2 = OP

(
κ2

√
dσ̃

∆
√
θ

)
1
∆
, and hence

∥ṼFΛ̃−1 −VΛ−1H⊤∥2 ≤ ∥Λ̃−1 −HΛ−1H⊤∥2 + ∥Λ−1∥2∥ṼF −VH⊤∥2

= OP

(
κ2

√
dσ̃

∆
√
θ

) 1

∆
+OP

(√dσ̃
∆
√
θ

) 1

∆
= OP

(
κ2

√
dσ̃

∆
√
θ

) 1

∆
.

Then following basic algebra we have that with high probability

∥Σ̂j −HΣ̃jH
⊤∥2 ≲ OP

(√dσ̃
∆
√
θ

) σ̃2

∆2θ
+OP

(
κ2

√
dσ̃

∆
√
θ

) σ̃2

∆2θ
= OP

(
κ2

√
dσ̃

∆
√
θ

) σ̃2

∆2θ
.

Then under the condition that κ32
√
dσ̃

∆
√
θ
= o(1), we have that

∥Σ̂j −HΣ̃jH
⊤∥2 = OP (κ

3
2

√
dσ̃

∆
√
θ
)
σ̃2

λ21θ
= oP

(
λK(Σ̃j)

)
.
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E Proof of Technical Lemmas

In this section, we provide proofs of the technical lemmas used in the proofs of the main

theorems.

E.1 Proof of Lemma D.2

It can be easily seen that

∥Ω/√p∥2 = (∥ΩΩ⊤/p∥2)1/2 =
(
(d/p)∥Ω⊤Ω/d∥2

)1/2
.

By Lemma 3 in Fan et al. (2019), we know that ∥∥Ω⊤Ω/d − Ip∥2∥ψ1 ≲
√
p/d, and thus

∥∥Ω⊤Ω/d∥2∥ψ1 ≲ 1+
√
p/d = O(1). Therefore, we have ∥∥ΩΩ⊤/p∥2∥ψ1 ≲ d/p. By Jensen’s

inequality, we in turn get ∥∥Ω/√p∥2∥ψ1 ≲
√
d/p.

E.2 Proof of Lemma D.3

By Proposition 10.4 in Halko et al. (2011), we know that for any t ≥ 1, we have

P
(∥∥Ω†∥∥

2
≥

e
√
p

p−K + 1
· t
)

≤ t−(p−K+1). (E.34)

Since p ≥ 2K, there exists a constant c such that ep
p−K+1

≤ c, and thus

P
(√

p
∥∥Ω†∥∥

2
≥ ct

)
≤ t−(p−K+1). (E.35)
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Therefore, we have

E
(
(σmin(Ω/

√
p))−a

)
= E

(∥∥√pΩ†∥∥a
2

)
=

∫
u≥0

P
(∥∥√pΩ†∥∥a

2
≥ u

)
du

=

∫
0≤u≤ca

P
(∥∥√pΩ†∥∥a

2
≥ u

)
du+

∫
u≥ca

P
(∥∥√pΩ†∥∥a

2
≥ u

)
du

≤ ca +

∫
u≥ca

P
(∥∥√pΩ†∥∥

2
≥ u1/a

)
du ≤ ca +

∫
u≥ca

(
u1/a/c

)−(p−K+1)
du

= ca
(
1 +

1

(p−K + 1)/a− 1

)
.

Since 1 + 1
(p−K+1)/a−1

≤ 2, the claim follows.

E.3 Proof of Lemma D.4

We first consider the probability P
(
∥Σ′ −VV⊤∥2 ≥ ε

)
. Recall the matrixY(ℓ) := VP0Λ

0V⊤Ω(ℓ).

Now by Jensen’s inequality and Wedin’s Theorem (Wedin, 1972), we have

∥Σ′ −VV⊤∥2 = ∥E
(
V̂(ℓ)V̂(ℓ)⊤|M̂

)
−VV⊤∥2 ≤ E

(∥∥∥V̂(ℓ)V̂(ℓ)⊤ −VV⊤
∥∥∥
2

∣∣∣M̂)
≲ E

(
∥Ŷ(ℓ)/

√
p−Y(ℓ)/

√
p∥2/σK

(
Y(ℓ)/

√
p
)
|M̂
)
≤ ∥E∥2

∆
E

 ∥Ω(ℓ)/
√
p∥2

σmin

(
Ω̃(ℓ)/

√
p
) ∣∣∣∣M̂


=

∥E∥2
∆

E

 ∥Ω(ℓ)/
√
p∥2

σmin

(
Ω̃(ℓ)/

√
p
)
 ≤ ∥E∥2

∆
E
(
∥Ω(ℓ)/

√
p∥22
)1/2 E((σmin(Ω

(ℓ)/
√
p)
)−2
)1/2

≲
∥E∥2
∆

∥∥Ω(ℓ)/
√
p∥2∥ψ1 ≲

∥E∥2
∆

√
d/p,

where the last but one inequality is due to Lemma D.3 under the condition that p ≥

max(2K,K + 3), and the last inequality is due to Lemma D.2. Therefore, by Assumption 1,
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there exist constants c0, c
′
0 > 0 such that

P
(
∥Σ′ −VV⊤∥2 ≥ ε

)
≤ P

(
∥E∥2
∆

√
d/p ≥ c′0ε

)
≤ exp

(
−c0

√
p

d

∆ε

r1(d)

)
.

Similarly, we consider the probability P
(
∥Σ′ − V̂V̂⊤∥2 ≥ ε

)
. By Assumption 1, there exist

constants c′′0, c
′′′
0 > 0 such that

P
(
∥Σ′ − V̂V̂⊤∥2 ≥ ε

)
≤ P

(
∥Σ′ −VV⊤∥2 ≥ ε/2

)
+ P

(
∥V̂V̂⊤ −VV⊤∥2 ≥ ε/2

)
≤ exp

(
−c0

√
p

d

∆ε

2r1(d)

)
+ P

(
∥E∥2
∆

≥ c′′′0 ε

)
≤ exp

(
−c0

√
p

d

∆ε

2r1(d)

)
+ exp

(
−c

′′
0∆ε

r1(d)

)
≲ exp

(
−c0

√
p

d

∆ε

2r1(d)

)
.

Therefore, the claim follows.

E.4 Proof of Lemma D.5

We know that Cov(x1 + x2) = Cov(x1) + Cov(x2) + Cov(x1,x2) + Cov(x2,x1), where

Cov(x1,x2) = E(x1 − Ex1)(x2 − Ex2)
⊤, and

∥Cov(xi)∥2 = max
∥v∥2=1

v⊤ Cov(xi)v = max
∥v∥2=1

Var
(
v⊤xi

)
,

for i = 1, 2. Therefore, we have

∥Cov(x1,x2)∥2 = max
∥v∥2=1,∥u∥2=1

v⊤Cov(x1,x2)u = max
∥v∥2=1,∥u∥2=1

Cov(v⊤x1,u
⊤x2)

≤ max
∥v∥2=1,∥u∥2=1

√
Var(v⊤x1)

√
Var(v⊤x2) =

√
∥Cov(x1)∥2∥Cov(x2)∥2

≤ 1

2
∥Cov(x1)∥2 +

1

2
∥Cov(x2)∥2.
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Thus we have

∥Cov(x1 + x2)∥2 ≤ ∥Cov(x1)∥2 + ∥Cov(x2)∥2 + ∥Cov(x1,x2)∥2 + ∥Cov(x2,x1)∥2

≤ 2∥Cov(x1)∥2 + 2∥Cov(x2)∥2.

F Wedin’s Theorem

Lemma F.1 (Modified Wedin’s Theorem). Let M⋆ and M = M⋆ + E be two matrices in

Rn1×n2 (without loss of generality, we assume n1 ≤ n2 ), whose SVDs are given respectively

by

M⋆ =

n1∑
i=1

σ⋆i u
⋆
iv

⋆⊤
i =

[
U⋆ U⋆

⊥

] Σ⋆ 0 0

0 Σ⋆
⊥ 0


 V⋆⊤

V⋆⊤
⊥

 ,

M =

n1∑
i=1

σiuiv
⊤
i =

[
U U⊥

] Σ 0 0

0 Σ⊥ 0


 V⊤

V⊤
⊥

 .
Here, σ1 ≥ · · · ≥ σn1 (resp. σ⋆1 ≥ · · · ≥ σ⋆n1

) stand for the singular values of M (resp.

M⋆) arranged in descending order, ui (resp. u⋆i ) denotes the left singular vector associated

with the singular value σi (resp. σ
⋆
i ), and vi (resp. v⋆i ) represents the right singular vector

associated with σi (resp. σ
⋆
i ). U and U⋆ stand for the top r eigenvectors of M and M⋆

respectively. Then,

max
{
∥UU⊤ −U⋆U⋆⊤∥2, ∥VV⊤ −V⋆V⋆⊤∥2

}
≲

2∥E∥
σ⋆r − σ⋆r+1

, (F.36)

and

max
{
∥UU⊤ −U⋆U⋆⊤∥F, ∥VV⊤ −V⋆V⋆⊤∥F

}
≲

2
√
r∥E∥

σ⋆r − σ⋆r+1

. (F.37)
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Proof. By Wedin’s Theorem (Wedin, 1972), if ∥E∥2 < (1− 1/
√
2)
(
σ⋆r − σ⋆r+1

)
, (F.36) and

(F.37) are true. When ∥E∥2 ≥ (1− 1/
√
2)
(
σ⋆r − σ⋆r+1

)
, the RHS of (F.36) are larger than

or equal to 2−
√
2, whereas the LHS are bounded by 1. Thus (F.36) follows trivially, and

so is (F.37).

G Supplementary Figures

We provide in this section additional figures deferred from the main paper.

(a) Example 1: Spiked Covariance Model (b) Example 2: Gaussian Mixture Models
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Figure 8: Asymptotic relative efficiency (ARE) between the FADI estimator and the traditional
PCA estimator under the spiked covariance model and GMM, where the ARE is measured by
det(Σ̂FADI)1/K · det(Σ̂PCA)−1/K with Σ̂FADI and Σ̂PCA being the empirical covariance matrices
for the FADI and traditional PCA estimators (Serfling, 2009). The results suggest that when
Lp/d > 1 and increases, the ARE between FADI and the traditional PCA approaches 1.

Figure 9: Illustration of Step 0 for Example 1. Σ̂
(s)
S = X

(s)⊤
[:,S] X

(s)
[:,S] is calculated by the data

columns in the set S for the s-th split (s ∈ [m]), and Σ̂S = n−1
∑

s∈[m] Σ̂
(s)
S .
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Figure 10: (a) Correlations between the 25 leading PCs calculated by FADI and by full sample

PCA on the 1000 Genomes Data; (b) Top 25 eigenvalues for the sample covariance matrix of the

1000 Genomes Data. We can see that for the 15 leading PCs, the results calculated by FADI

are highly correlated to the results calculated by the traditional full sample PCA, whereas the

correlations drop afterward. This can be attributed to the fact that the top 15 eigenvalues are

well-separated for the sample covariance matrix of the 1000 Genomes Data, and the eigengaps get

smaller after the 15th eigenvalue.
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Figure 11: Comparison of the top 12 PCs of the 1000 Genomes Data calculated by full sample

traditional PCA and by FADI.
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